
CROWDSOURCING AND MANAGEMENT
OF NATURE OBSERVATIONAL DATA

By

Giannis Skevakis

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

IN ELECTRONIC & COMPUTER ENGINEERING

at the

SCHOOL OF ELECTRONIC & COMPUTER ENGINEERING

TECHNICAL UNIVERSITY OF CRETE

2014

Dedicated to my family

Abstract

Observations of plants and animals in nature is highly valued information for the experts in the area

of biodiversity. They can be used to define changes in the population of animals, plants, or track

their movements throughout long periods of time. Moreover, the richer the information following

the observations, the more knowledge can be extracted from them. However, the limited number

of experts and the limited funding in the area, makes the observation gathering procedure almost

impossible. We present the design and implementation of a framework for the management of bio-

diversity observations captured by users roaming in the nature. This aims to alleviate the need for

experts capturing biodiversity information, and propagates the collection of information to simple

users wandering in the nature. Our framework consists of a model supporting the observations, and

an infrastructure that allows the capturing, enrichment and storage of the observations using state-

of-the-art technologies. Our architecture provides a scalable, highly efficient management of the

collected data. The collection of the observational data is performed in real-time using mobile de-

vices that most of the people have available with them, like mobile phones and tablets. Additionally,

we describe the meta-model that we have defined, allowing the personalization of the metadata that

follow the observations. This provides our framework with the freedom and extensibility needed so

as to be implemented for various domains other than biodiversity. Finally, we describe the process

of migrating the data collected by the Natural Europe project to our infrastructure.

Acknowledgements

I would like to thank my supervisor, Prof. Stavros Christodoulakis, for his encouragement and his

continuous guidance and support throughout my research. I would like also to thank him for the

important experiences he offered me during my stay at the Lab. of Distributed Multimedia Informa-

tion Systems and Applications (TUC/MUSIC), as well as for the positive influence in broadening

my horizons.

Special thanks go to Konstantinos Makris for his continuous support, his valuable advices, as

well as the long fruitful discussions.

I would also like to express my gratitude to the readers of this thesis Prof. Antonios Deligian-

nakis and Prof. Aikaterini Mania for the time they devoted and their critical evaluation and helpful

comments on my thesis.

My appreciation goes to Polyxeni Arapi, Chrisa Tsinaraki, Nektarios Gioldasis and Fotis Kaza-

sis for being always ready to offer their help whenever needed. Furthermore, I would like to thank

all my colleagues in the Laboratory for their support and for the pleasant environment they pro-

vided.

Last but not least, I would like to thank my family for their never ending love, support, and their

patience with me especially over the past few months. Without them, many of my dreams would

not be possible.

Giannis Skevakis

Technical University of Crete

April 2014

Publications

Part of the work that is included in this thesis, or carried out during my M.Sc. studies has been

published in the following journals and conference proceedings:

• Skevakis G., Tsinaraki C., Trochatou I., Christodoulakis S.:“A Crowdsourcing Framework for

the Management of Mobile Multimedia Nature Observations”, International Journal on Mobile

Information Systems, 2014.

• Tsinaraki C., Skevakis G., Trochatou I., Christodoulakis S.: “MoM-NOCS: Management of

Mobile Multimedia Nature Observations using Crowd Sourcing”. Proceedings of the 11th In-

ternational Conference on Advances in Mobile Computing & Multimedia, Vienna, Austria,

November 2013.

• Skevakis G., Makris K., Kalokyri V., Arapi P., Christodoulakis S.: “Metadata Management,

Interoperability and Linked Data Publishing Support for Natural History Museums”. Interna-

tional Journal on Digital Libraries (IJDL), 2014.

• Makris K., Skevakis G., Kalokyri V., Arapi P., Christodoulakis S., Stoitsis J., Manolis N.,

Rojas S. L.: “Federating Natural History Museums in Natural Europe”. Proceedings of the

7th Metadata and Semantics Research Conference, Special track on Metadata & Semantics for

Cultural Collections & Applications (MTSR ’13), Thessaloniki, Greece, November 2013. Best

Student Paper Award.

• Makris K., Skevakis G., Kalokyri V., Arapi P., Christodoulakis S.: “Metadata Management

and Interoperability Support for Natural History Museums”. Proceedings of the 17th Inter-

national Conference on Theory and Practice of Digital Libraries (TPDL ’13), Valletta, Malta,

September 2013. Best Student Paper Nomination.

• Skevakis G., Makris K., Arapi P., Christodoulakis S.: “Elevating Natural History Museums’

Cultural Collections to the Linked Data Cloud”. Proceedings of the 3rd International Workshop

on Semantic Digital Archives (SDA ’13), Valletta, Malta, September 2013.

Contents

1 Introduction 1
1.1 Summary of Contributions . 3

1.2 Reader’s Guide . 4

2 Related Work 5
2.1 FieldData . 5

2.2 eBird . 7

2.3 Observation.org . 8

2.4 Atlas of Living Australia . 10

3 Background 13
3.1 The Spring Framework . 13

3.2 MongoDB . 17

3.3 Phonegap . 25

3.4 JavaScript . 26

3.5 Elasticsearch . 30

3.6 Xuggler . 31

3.7 Redis . 31

4 The Natural Europe project 33
4.1 The Natural Europe Cultural Environment (NECE) 34

4.1.1 The Natural Europe CHO Application Profile 34

4.1.2 The MultiMedia Authoring Tool (MMAT) 35

4.1.3 The CHO Repository . 37

4.1.4 The Vocabulary Server . 38

4.2 The metadata management life-cycle . 39

4.3 Connection of the Natural Europe Cultural Environment with BioCASE/GBIF . . . 40

xii Contents

4.4 Deployment and usage . 42

5 Functional Specification 45

5.1 Stakeholders . 45

5.2 Technical Requirements . 46

5.2.1 Model . 46

5.2.2 Meta-Model . 47

5.2.3 Mobile Application . 47

5.2.4 Web Application . 48

5.2.5 Backend . 49

5.3 Use Cases . 49

6 Model 57

6.1 Meta-Model . 57

6.2 Model . 61

6.3 Model Examples . 65

7 Architecture 71

7.1 Client Side Architecture . 71

7.1.1 Model . 73

7.1.2 View . 73

7.1.3 Controller . 73

7.1.4 Event Bus . 74

7.1.5 Application Manager . 74

7.1.6 Router . 74

7.2 Server Side Architecture . 74

7.2.1 Service Layer . 75

7.2.2 Business Logic Layer . 75

7.2.3 Data Layer . 75

8 Implementation 77

8.1 Client Side . 77

8.1.1 MVC Pattern . 78

8.1.2 User Interface . 79

8.1.3 Routing . 83

8.1.4 Modular Development . 84

Contents xiii

8.1.5 View . 86

8.1.6 Maps . 88

8.1.7 Data Adapters . 89

8.1.8 Development Process . 89

8.2 Server Side . 91

8.2.1 Persistency . 91

8.2.2 Indexing . 93

8.2.3 Caching . 94

8.2.4 Security . 94

9 Graphical User Interface 97
9.1 Design Process . 97

9.2 User interfaces . 103

9.2.1 Mobile . 103

9.2.2 Desktop . 118

10 Migration of the Natural Europe data 125
10.1 Meta-Model definition . 125

10.2 Architecture . 126

10.3 Results . 127

11 Conclusion & Future Work 129

Bibliography 131

A Model Implementation Samples 137

B Restful Web Services 145
B.1 User . 146

B.2 Object . 149

B.3 Observation . 156

B.4 Application Profile . 166

B.5 Multimedia . 171

B.6 Statistics . 174

List of Tables

4.1 The number of CHOs annotated by each NHM using MMAT. 43

5.1 Use Case 1: “Log in” . 49

5.2 Use Case 2: “Logout” . 50

5.3 Use Case 3: “Create new account” . 50

5.4 Use Case 4: “Create Object” . 50

5.5 Use Case 5: “Create Observation” . 51

5.6 Use Case 6: “Update Object” . 51

5.7 Use Case 7: “Update Observation” . 52

5.8 Use Case 8: “Delete Object” . 52

5.9 Use Case 9: “Delete Observation” . 53

5.10 Use Case 10: “Create new type of Objects/Observations” 53

5.11 Use Case 11: “Update user profile” . 54

5.12 Use Case 12: “Review Observations of a specific Object” 54

5.13 Use Case 13: “Review Multimedia of a specific Object” 54

6.1 Example Application Profile for Plants . 66

6.2 Example Application Profile for Observations about Plants 66

6.3 Example Application Profile for Animals . 68

6.4 Example Application Profile for Observations about Animals 68

10.1 Application Profile for the Objects based on the NE CHO AP 126

10.2 Application Profile for the Observations based on the NE CHO AP 126

10.3 The number of CHOs annotated by each NHM using MMAT. 128

B.1 RESTful Service: Get all users . 146

B.2 RESTful Service: Get user’s details . 147

xvi List of Tables

B.3 RESTful Service: Update user’s details . 148

B.4 RESTful Service: Delete user . 148

B.5 RESTful Service: Create object . 149

B.6 RESTful Service: Get objects . 150

B.7 RESTful Service: Get object . 151

B.8 RESTful Service: Get objects of a specific type 152

B.9 RESTful Service: Get latest objects . 153

B.10 RESTful Service: Search objects . 154

B.11 RESTful Service: Delete object . 155

B.12 RESTful Service: Create observation . 156

B.13 RESTful Service: Get observation . 157

B.14 RESTful Service: Get observations . 158

B.15 RESTful Service: Get object’s observations . 159

B.16 RESTful Service: Get user’s observations . 160

B.17 RESTful Service: Get observations of a single type 161

B.18 RESTful Service: Get latest observations . 162

B.19 RESTful Service: Get most popular observations 163

B.20 RESTful Service: Search observations . 164

B.21 RESTful Service: Delete observation . 165

B.22 RESTful Service: Create application profile . 166

B.23 RESTful Service: Get application profiles . 167

B.24 RESTful Service: Get application profile details 168

B.25 RESTful Service: Get application profile compact data 169

B.26 RESTful Service: Delete application profile . 170

B.27 RESTful Service: Upload new multimedia . 171

B.28 RESTful Service: Get observation . 172

B.29 RESTful Service: Get object’s multimedia . 173

B.30 RESTful Service: Delete multimedia . 173

B.31 RESTful Service: Get user statistics . 174

B.32 RESTful Service: Get observation statistics . 174

B.33 RESTful Service: Get object statistics . 175

B.34 RESTful Service: Get application profile type statistics 175

List of Figures

2.1 FieldData - Creation of observation . 6

2.2 eBird observations on maps . 7

2.3 Observation.org . 9

2.4 Observation.org . 9

2.5 Atlas of Living Australia . 10

2.6 Atlas of Living Australia . 11

3.1 Overview of the Spring Framework . 14

3.2 MongoDB document . 18

3.3 MongoDB collection . 19

3.4 Default routing of reads and writes to the primary 20

3.5 Large collection with data distributed across 4 shards 21

3.6 The stages of a MongoDB query with a query criteria and a sort modifier 22

3.7 Sample aggregation pipeline operation . 23

3.8 Sample map-reduce operation . 24

4.1 The Natural Europe Architecture. 34

4.2 The Multimedia Authoring Tool Architecture. 36

4.3 Screenshots presenting the graphical user interface of MMAT. 36

4.4 The CHO Repository Architecture. 37

4.5 An example of the Catalogue of Life SKOSified data in the form of a graph. 38

4.6 The BioCASE Architecture. 41

4.7 Connecting Natural Europe Cultural Environment with BioCASE/GBIF. 41

6.1 The Meta-Model . 58

6.2 Model . 62

6.3 Model Example: Object Plant . 67

xviii List of Figures

6.4 Model Example: Observation Plant . 67

6.5 Model Example: Object Animal . 68

6.6 Model Example: Observation Animal . 69

7.1 Overall System Architecture . 72

8.1 Model View Controller Pattern . 78

8.2 Mobile Application User Interface Elements . 80

8.3 Routing . 84

8.4 Comparison between SQL and MongoDB schemas. 93

8.5 Comparison between SQL and MongoDB queries. 94

9.1 Storyboard sketch . 98

9.2 User Interface Prototypes . 99

9.3 User Interface Prototypes (cont’d) . 100

9.4 User Interface Prototypes (cont’d) . 101

9.5 User Interface Prototypes (cont’d) . 102

9.6 Mobile Interface: Login screen . 103

9.7 Mobile Interface: Account creation screen . 104

9.8 Mobile Interface: Home screen . 105

9.9 Mobile Interface: Menu . 106

9.10 Mobile Interface: Object type . 107

9.11 Mobile Interface: Object list . 108

9.12 Mobile Interface: Object review . 109

9.13 Mobile Interface: Observations and Multimedia about object 110

9.14 Mobile Interface: Observation list . 111

9.15 Mobile Interface: Observation review . 112

9.16 Mobile Interface: Create Object and Observation 113

9.17 Mobile Interface: Upload/Capture multimedia for Object / Observation 114

9.18 Mobile Interface: User’s observations . 115

9.19 Mobile Interface: User’s profile edit . 116

9.20 Mobile Interface: User details . 117

9.21 Desktop Interface: Object list . 118

9.22 Desktop Interface: Object review . 119

9.23 Desktop Interface: Observations about object . 119

9.24 Desktop Interface: Multimedia about object . 120

List of Figures xix

9.25 Desktop Interface: Observation list . 120

9.26 Desktop Interface: Observation review . 121

9.27 Desktop mobile review screen . 122

9.28 Desktop responsive example . 123

10.1 Overview of the Natural Europe Data migration process 127

Chapter 1

Introduction

Observations of plants and animals in nature is a very rich source of information for the experts in

the context of biodiversity. They can be used to define changes in the population of animals, plants,

or track their movements throughout long periods of time. However, the limited number of experts

and the limited funding in the area, makes the observation gathering procedure almost impossible.

The same need for observations along with the same problems extends to other contexts as

well. Examples to these could be observations about weather conditions, reports of the damages

from earthquakes, reports of car accidents, reports of fungus appearance on crops, etc. All these

fields would be greatly helped by the mass cataloging of information which could later be useful

for analyzing and inferring new knowledge.

Studying large-scale patterns in nature requires a vast amount of data to be collected across

an array of locations and habitats over spans of years or even decades. One way to obtain such

data is through citizen science, a research technique that enlists the public in gathering scientific

information [19]. Large-scale projects can engage participants in continental or even global data-

gathering networks. Pooled data can be analyzed to illuminate population trends, range changes,

and shifts in phenologies.

Crowdsourcing is the new era in citizen-science, allowing the collaborative resolution of tough

problems and the distillation of new knowledge. Coined by Jeff Howe and Mark Robinson [43], the

term crowdsourcing describes a new web-based business model that harnesses the creative solutions

of a distributed network of individuals through what amounts to an open call for proposals. In

other words, a company posts a problem online, a vast number of individuals (the ‘crowd’) offer

solutions to the problem, the winning ideas are awarded some form of a bounty, and the company

mass-produces the idea for its own gain [21].

To understand the workings of crowdsourcing, it is best to examine some of the most successful

2 Chapter 1. Introduction

and profitable cases in a variety of industries. Notable business examples of crowdsourcing include

the t-shirt company Threadless.com 1, microstock photography agency iStockphoto.com [20, 44],

corporate research and development clearing-house InnoCentive.com 2.

More than just an online business model, crowdsourcing is also a problem solving model that

can have profound influence in the way we solve our world’s most pressing social and environ-

mental problems, a sentiment increasingly echoed by others. In that spirit, the business model of

crowdsourcing is already being applied in non-profit, government projects.

The most recent non-profit crowdsourcing event in global scale is the search for the wreckage of

flight MH370 of the Malaysia Airlines. The initiative for this act was taken by Tomnod3. Tomnod

provides the users with recent satellite images of the sea around Malaysia, and the users try to

identify objects in the ocean that could be parts of the airplane. A similar initiative taken by Tomnod

in the past was a search and rescue operation when a light airplane with a crew of five went missing

over the Idaho wilderness. The Tomnod crowd rallied to search satellite images for signs of the

crash, which was found a few days later.

Studies [73] have shown that users change their established practices upon adopting widely used

crowdsourcing systems because the additional effort supports individual satisfaction and commu-

nity recognition. This dramatically increases the value of the data for research, promoting improved

scientific outcomes.

The advance of computers and the Internet to global scale and the rise of people involved

in online communities gave vast amount of power to crowdsourcing. Mobile devices have been

increasing in numbers ever since they were introduced to the public. Especially during the last

5 years and due to the advances in mobile computing, mobile phones and tablets have become

more powerful to the extend that they have started to replace computers in lots of routine tasks

(e.g. checking email, browsing, reading books). The current numbers and the future projections

of mobile devices have forced more and more companies to move towards mobile applications,

available instantly to the users wherever they are.

In this thesis, we present the design and implementation of a framework for the management of

observations made by users at real time. The observations that we support follow a flexible meta-

model, allowing our framework to support various domains, e.g. biodiversity observations about

species, observations about natural disasters like earthquakes, observations about car accidents. The

collection of the observational data is performed using mobile devices that most of the people have

available with them, like mobile phones and tablet devices. Moreover, our technical platform has

1https://www.threadless.com
2http://www.innocentive.com
3http://www.tomnod.com/nod/

https://www.threadless.com
http://www.innocentive.com
http://www.tomnod.com/nod/

1.1. Summary of Contributions 3

been build with efficiency in mind, providing a scalable, highly efficient system for the management

of the collected data.

In more detail, the aim and objectives of this thesis are to: (a) define the model needed to

represent observations made by users, (b) define the metamodel (application profile) providing ex-

tensibility to the models so as to be able to support different contexts, (c) design and develop an

infrastructure supporting the model and the application profiles, (d) design and develop an appli-

cation supporting the creation of observations conforming to the model and the application profile,

(e) develop web services enabling the exploitation of the collected data from external systems

1.1 Summary of Contributions

In this thesis, we present a framework for the management of observations made by users at real

time. In more detail, we propose a model for describing observations and a meta-model for per-

sonalizing this model according to the user needs. The model refers to the basic information con-

cerning the creation of observations along with the captured multimedia objects. The meta-model

refers to the model that we have developed, enabling the creation of application profiles concerning

the description of the observations. This allows the parametrization of the model depending on the

context, by defining the information that is collected about each observation.

Additionally to the model and meta-model, we have developed a technical platform to support

them. The implemented platform is comprised of two parts, the backend system and the client

applications. The backend system is the core of the infrastructure, holding all the data of the

system and performing all the business logic while providing services to the client side as well as

external systems. The client applications are the graphical user interfaces that the users interact

with during the creation and management of the observations. The whole technical platform has

been build using state-of-the-art web technologies, and the applications provided include a native

mobile application compatible with all the major mobile platforms.

Our novel infrastructure enables the creation of external applications for the exploitation of the

collected data, as well as systems that are able to generate and provide data, e.g. sensors capturing

data and creating observations.

Finally, we present the process of migrating the data collected during the Natural Europe project

to our new infrastructure. This process is extensible and can be applied to other systems as well.

4 Chapter 1. Introduction

1.2 Reader’s Guide

Apart from the introduction, the preliminaries, the related work, and the conclusion, this thesis

can be divided into three parts. In the first part, we define the model and the meta-model for

the observations. In the second part, we describe the infrastructure that we developed in order to

support the model and the meta-model, and in the third part we present the use interfaces that we

developed for the interaction between our systems and the users. More precisely, this thesis is

structured as follows:

• Chapter 2 presents the systems and research that are most relevant to the issues addressed in

this thesis.

• Chapter 3 provides a brief overview of the technologies used for the implementation of

the systems. These include the state of the art advances in developing web applications

(Javascript), web applications/services (Spring) and modern database systems (MongoDB).

• Chapter 4 presents the Natural Europe project on which we have worked for the most duration

of this thesis and was the main influence for our research.

• Chapter 5 describes the functional specification of the system that has been developed for the

management of the whole lifecycle of the observations and their metadata.

• Chapter 6 specifies the model and the meta-model for describing observations. The model

refers to the basic information concerning the creation of observations along with the cap-

tured multimedia objects. The meta-model refers to the model that we have developed, en-

abling the creation of application profiles concerning the description of the observations.

• Chapter 7 presents the architecture designed and implemented for the infrastructure.

• Chapter 8 presents the implementation details of some of the components in more detail,

providing some more insight as to how specific parts of the system have been implemented.

• Chapter 9 presents the User Interfaces that have been developed for the interaction with the

user.

• Chapter 10 presents the process and the software that we have developed in order to achieve

the transition of the data collected from the Natural Europe project to our infrastructure.

Chapter 2

Related Work

In what follows, we present products and research that are most relevant to the issues addressed

in our work. For each of the systems described below, we include the features that are closest to

our framework and we add screenshots of the user interfaces whenever possible. Furthermore, we

compare them to our framework, identifying the advantages and disadvantages that they pose.

2.1 FieldData

FieldData1 (also known as the BDRS, Biological Data Recording System) was developed by Gaia

Resources on behalf of the Atlas of Living Australia (see Section 2.4) to help individuals, re-

searchers, community groups and natural resource management groups collect and manage biodi-

versity data. For the citizen scientist, it provides a means to contribute sightings, photos and other

files to a project and to then see and edit their records.

It’s features include the definition of the species that the observations are to be made, as well as

the parametrization of the presentation of them. Additionally, the administrators have the freedom

to define the application profile used for the descriptions of the observations - that is the metadata

elements that the users need to complete for each observation that they document. Figure 2.1

presents the user interface for the creation of a new observation. On the center of the screen we find

the metadata that the administrator has defined for the new observations and the user needs to fill.

All the occurrences are presented either as a list or on a map for better visualization, while

it is also possible to generate reports on the data and online surveys. Finally, the interface is fully

customizable, in order to provide different look and feel depending on the needs of the organizations

hosting it. There are also certain procedures that allow the collected data to be shared with the Atlas.

1http://www.ala.org.au/get-involved/citizen-science/fielddata-software/

http://www.ala.org.au/get-involved/citizen-science/fielddata-software/

6 Chapter 2. Related Work

Figure 2.1: FieldData - Creation of observation using the predefined application profile.

Some of the uses of FieldData are described below:

Citizen scientists can use the software to contribute something meaningful to scientific research

on biodiversity in Australia, discover new things about the environment you live in or see your data

online and compare it to what others are contributing.

Naturalist groups can use the software to easily build forms for recording observations that

are then published online, enable members to login and participate in online surveys or quickly

generate maps and reports from the data collected by your members.

Environmental educators can use the software to engage with a wider audience using the web,

easily build recording forms and publish them online, create species pages to provide your volun-

teers with meaningful information on species or add simple identification tags to species to allow

people to dynamically identify species.

Researchers and scientists can use the software to easily build recording forms and publish

2.2. eBird 7

Figure 2.2: eBird observations on maps.

them online, allow interested people to register and start recording their observations or extract

information for further analysis.

FieldData is very close to our framework in terms of the model and the application profile

support. However it only provides a web interface for the creation of observations, so the users

will have a lot of troubles trying to create the observations in real time using their mobile devices.

That is they will need to have a big device since the interfaces are not optimized for mobile phones,

and additionally they will need internet access. Moreover, FieldData is bound to the biodiversity

context since the observations are connected with predefined species, while our application profiles

can be extended to other contexts as well by defining the profiles of the objects.

2.2 eBird

eBird2 [45, 74] is a real-time, online checklist program. eBird has revolutionized the way that

the birding community reports and accesses information about birds. Launched in 2002 by the

Cornell Lab of Ornithology and National Audubon Society, eBird provides rich data sources for

basic information on bird abundance and distribution at a variety of spatial and temporal scales.

2http://ebird.org/content/ebird/

http://ebird.org/content/ebird/

8 Chapter 2. Related Work

eBird’s goal is to maximize the utility and accessibility of the vast numbers of bird observations

made each year by recreational and professional bird watchers. It is amassing one of the largest and

fastest growing biodiversity data resources in existence. For example, in March 2012, participants

reported more than 3.1 million bird observations across North America.

The observations of each participant join those of others in an international network of eBird

users. eBird then shares these observations with a global community of educators, land managers,

ornithologists, and conservation biologists. In time these data will become the foundation for a

better understanding of bird distribution across the western hemisphere and beyond.

The way that eBird works is that it documents the presence or absence of species, as well as bird

abundance through checklist data. A simple web-interface allows users to submit their observations

or view the observations of others. eBird encourages users to participate by providing Internet tools

that maintain their personal bird records and enable them to visualize data on top of maps. All the

features are available in English, Spanish, and French.

Additionally, eBird collects observations from birders through portals managed and maintained

by local partner conservation organizations. This way eBird targets specific audiences with the

highest level of local expertise, promotion, and project ownership. Portals may have a regional

focus or they may have more specific goals and/or specific methodologies. Each eBird portal is

fully integrated within the eBird database and application infrastructure.

Comparing eBird with our framework, one can easily realize the fact that eBird only supports

observations about birds. This means that it has predefined fields for the information that the users

can supply, since their major concern is the place and the time of the sightings. Moreover, eBird

does not offer mobile device support and capturing of multimedia.

2.3 Observation.org

Observation.org3 is a web information system that enables the creation of biodiversity observations.

It’s objective is to provide a central point of contact for nature minded people and biodiversity data.

All the data collected is available to the public, and in real time, enabling the instant exploitation of

new observations. Observation.org’s long term goal is to cover all species groups.

Observation.org cooperates with local and national workgroups and provides them with their

personalized interfaces, so these groups can collect and view local data. Observation.org pays a lot

of attention to the quality of the data. To achieve this, the data is checked daily by a number of

volunteers, who spend many hours checking the data and most of them have expertise in certain

3http://observation.org/

http://observation.org/

2.3. Observation.org 9

species groups.

Figure 2.3: Observation.org - Sample observation of a herd of Rhinoceros.

Figure 2.4: Observation.org - Sample observation of a herd of Rhinoceros.

Observation.org is another system very close to our framework in terms of the functionality.

Although it provides a mobile application for Android and iOS devices, it does not support the

realtime capturing of observations or the offline usage. Moreover, the model is predefined and the

10 Chapter 2. Related Work

same for all the species, whether plants or animals, which forces very poor metadata collection

along the observations.

2.4 Atlas of Living Australia

The Atlas of Living Australia4 contains information on all the known species in Australia, aggre-

gated from a wide range of data providers: museums, herbaria, community groups, government

departments, individuals and universities. The number of providers supported so far is around 500.

Figure 2.5: Atlas of Living Australia - Visualization of occurrences for the species ‘Canis Lupus’.

The data of the Atlas include information about species and observations. The catalog of species

is very comprehensive, containing the full taxonomic classification, common names from various

sources, extensive gallery, as well as literature references. This data is aggregated from multi-

ple sources around Australia, like museums and archives, as well as from individuals that want to

contribute their sightings. Figure 2.5 shows the visualization tool containing the map of Australia

with the observations about the species “Canis Lupus”. We can also see the data of a single oc-

4http://www.ala.org.au/

http://www.ala.org.au/

2.4. Atlas of Living Australia 11

currence, describing the scientific name, the taxonomic classification, the data provider, the spatial

information, etc.

Figure 2.6: Atlas of Living Australia - Complex visualization of occurrences for the species ‘Canis Lupus’
(red dots), along with the Sheep (blue dots) and average temperature data.

The available data for visualization on the maps does not only cover the occurrences of the

species, but it also extends to data about temperature, humidity, etc. Figure 2.6 is an example of the

visualization tool holding three different layers. The first one is the occurrences of wolfs “Canis

Lupus”, shown with red dots. The second layers contains occurrences of sheep, depicted by the

blue dots. Finally, the third layer shows the average temperature throughout the year in the whole

continent.

The Atlas of Living Australia collects data from a number of providers. The harvesting is

performed using the Darwin Core format, which means that the provides need to export their data in

Darwin Core before it is usable by the system. Moreover, the system exposes services to the outside

world, making the data accessible and exploitable by external systems. One of these systems is

GBIF 5, which aggregates the data along with data from other systems around the world.

5http://www.gbif.org

http://www.gbif.org

12 Chapter 2. Related Work

Compared to our framework, although the Atlas of Living Australia provides great visualization

interfaces for biodiversity observations, it only aggregates data from official sources (museums,

clubs, etc.), thus it does not allow simple users to submit their observations.

Summary

In this section we presented the systems and research that are most relevant to the issues addressed

in our work. For each of these systems we described the features that are closest to our framework

and we compared them to our framework.

Chapter 3

Background

This chapter presents a brief overview of the standards and technologies used in this thesis. Sec-

tion 3.1 describes The Spring Framework, the core of the back-end system. Section 3.2 presents

MongoDB, the document-oriented databased system used for persisting the data. Section 3.4

presents JavaScript, the scripting language used mainly for the implementation of the client side

logic and the interaction with the users, as well as the JavaScript libraries used. Section 3.5 presents

Elasticsearch, the system used for indexing and searching the data. Section 3.6 presents Xuggle,

the library used for analyzing and manipulating video and audio files. Finally, Section 3.7 presents

Redis, the system used for in-memory cache management, speeding up various aspects of the sys-

tem.

3.1 The Spring Framework

The Spring Framework [9] is an open source application framework and inversion of control con-

tainer for the Java platform. It provides a comprehensive programming and configuration model for

modern Java-based enterprise applications on any kind of deployment platform. The framework’s

core features can be used by any Java application, but there are extensions for building web ap-

plications on top of the Java EE platform. Although the framework does not impose any specific

programming model, it has become popular in the Java community as an alternative to, replacement

for, or even addition to the Enterprise JavaBean (EJB) model.

Modules

The Spring Framework includes a number of different modules that provide a wide range of func-

tionality and services. Although the list of modules is extensive, we will describe the ones used in

14 Chapter 3. Background

this work.

Figure 3.1: Overview of the Spring Framework.

Core Container

The Core Container consists of the Core, Beans, Context, and Expression Language modules.

The Core and Beans modules provide the fundamental parts of the framework, including the

IoC and Dependency Injection features. The BeanFactory is a sophisticated implementation of the

factory pattern. It removes the need for programmatic singletons and allows you to decouple the

configuration and specification of dependencies from your actual program logic.

The Context module builds on the solid base provided by the Core and Beans modules: it is a

means to access objects in a framework-style manner that is similar to a JNDI registry. The Context

module inherits its features from the Beans module and adds support for internationalization (using,

for example, resource bundles), event-propagation, resource-loading, and the transparent creation

of contexts by, for example, a servlet container. The Context module also supports Java EE features

such as EJB, JMX ,and basic remoting. The ApplicationContext interface is the focal point of the

Context module.

3.1. The Spring Framework 15

The Expression Language module provides a powerful expression language for querying and

manipulating an object graph at runtime. It is an extension of the unified expression language

(unified EL) as specified in the JSP 2.1 specification. The language supports setting and getting

property values, property assignment, method invocation, accessing the context of arrays, collec-

tions and indexers, logical and arithmetic operators, named variables, and retrieval of objects by

name from Spring’s IoC container. It also supports list projection and selection as well as common

list aggregations.

Data Access/Integration

The Data Access/Integration layer consists of the JDBC, ORM, OXM, JMS and Transaction mod-

ules. The JDBC module provides a JDBC-abstraction layer that removes the need to do tedious

JDBC coding and parsing of database-vendor specific error codes. The ORM module provides in-

tegration layers for popular object-relational mapping APIs, including JPA, JDO, and Hibernate.

Using the ORM package you can use all of these O/R-mapping frameworks in combination with all

of the other features Spring offers, such as the simple declarative transaction management feature

mentioned previously. The OXM module provides an abstraction layer that supports Object/XML

mapping implementations for JAXB, Castor, XMLBeans, JiBX and XStream. The Java Messaging

Service (JMS) module contains features for producing and consuming messages. The Transaction

module supports programmatic and declarative transaction management for classes that implement

special interfaces and for all your POJOs (plain old Java objects).

Web

The Web layer consists of the Web, Web-Servlet, WebSocket and Web-Portlet modules. Spring’s

Web module provides basic web-oriented integration features such as multipart file-upload function-

ality and the initialization of the IoC container using servlet listeners and a web-oriented application

context. It also contains the web-related parts of Spring’s remoting support. The Web-Servlet mod-

ule contains Spring’s model-view-controller (MVC) implementation for web applications. Spring’s

MVC framework provides a clean separation between domain model code and web forms, and in-

tegrates with all the other features of the Spring Framework. The Web-Portlet module provides the

MVC implementation to be used in a portlet environment and mirrors the functionality of Web-

Servlet module.

16 Chapter 3. Background

Test

The Test module supports the testing of Spring components with JUnit or TestNG. It provides

consistent loading of Spring ApplicationContexts and caching of those contexts. It also provides

mock objects that you can use to test your code in isolation.

Inversion of control container

Applications that are build with the Java language typically consist of objects that collaborate to

form the application proper. Thus the objects in an application have dependencies on each other.

Although the Java platform provides a wealth of application development functionality, it lacks

the means to organize the basic building blocks into a coherent whole, leaving that task to architects

and developers. This drove the development and usage of popular design patterns such as Factory,

Abstract Factory, Builder, Decorator, and Service Locator in order to compose the various classes

and object instances that make up an application. However, these patterns are simply best practices,

with a description of what the pattern does, where to apply it, the problems it addresses, and so forth.

Patterns are formalized best practices that the developer must implement himself in his application.

The Spring Framework Inversion of Control (IoC) component addresses this concern by provid-

ing a formalized means of composing disparate components into a fully working application ready

for use. The Spring Framework codifies formalized design patterns as first-class objects that you

can integrate into your own application(s). Numerous organizations and institutions use the Spring

Framework in this manner to engineer robust, maintainable applications.

Central to the Spring Framework Inversion of Control (IoC) component is the inversion of

control (IoC) container. The container can manage the whole lifecycle of the objects. Objects

created by the container are also called managed objects or beans. The container can be configured

by loading XML files or detecting specific Java annotations on configuration classes. These data

sources contain the bean definitions which provide the information required to create the beans.

Objects can be obtained by means of either dependency lookup or dependency injection. De-

pendency lookup is a pattern where a caller asks the container object for an object with a specific

name or of a specific type. Dependency injection is a pattern where the container passes objects by

name to other objects, via either constructors, properties, orfactory methods.

In many cases one need not use the container when using other parts of the Spring Framework,

although using it will likely make an application easier to configure and customize. The Spring

container provides a consistent mechanism to configure applications and integrates with almost all

Java environments, from small-scale applications to large enterprise applications.

3.2. MongoDB 17

Data access framework

Spring’s data access framework [39] addresses common difficulties developers face when working

with databases in applications. Support is provided for all popular data access frameworks in Java:

JDBC, iBatis/MyBatis, Hibernate, JDO, JPA, Oracle TopLink, Apache OJB, and Apache Cayenne,

among others.

For all of these supported frameworks, Spring provides these features:

• Resource management - automatically acquiring and releasing database resources.

• Exception handling - translating data access related exception to a Spring data access hierar-

chy.

• Transaction participation - transparent participation in ongoing transactions.

• Resource unwrapping - retrieving database objects from connection pool wrappers.

• Abstraction for BLOB and CLOB handling.

All these features become available when using template classes provided by Spring for each

supported framework. Critics have said these template classes are intrusive and offer no advantage

over using (for example) the Hibernate API directly. In response, the Spring developers have made

it possible to use the Hibernate and JPA APIs directly. This however requires transparent transaction

management, as application code no longer assumes the responsibility to obtain and close database

resources, and does not support exception translation.

Together with Spring’s transaction management, its data access framework offers a flexible ab-

straction for working with data access frameworks. The Spring Framework doesn’t offer a common

data access API; instead, the full power of the supported APIs is kept intact. The Spring Framework

is the only framework available in Java which offers managed data access environments outside of

an application server or container.

3.2 MongoDB

MongoDB [7, 23] is a cross-platform document-oriented database system. Classified as a NoSQL

database, MongoDB eschews the traditional table-based relational database structure in favor of

JSON-like documents with dynamic schemas (MongoDB calls the format BSON [2]), making the

integration of data in certain types of applications easier and faster. Released under a combination

of the GNU Affero General Public License and the Apache License, MongoDB is free and open

source software.

18 Chapter 3. Background

First developed by the software company 10gen (now MongoDB Inc.) in October 2007 as

a component of a planned platform as a service product, the company shifted to an open source

development model in 2009, with 10gen offering commercial support and other services. Since

then, MongoDB has been adopted as backend software by a number of major websites and services,

including Craigslist, eBay, Foursquare, SourceForge, and The New York Times, among others.

The following is a brief summary of some of the main features:

Document-Oriented Storage

Data in MongoDB has a flexible schema. Unlike SQL databases, where you must determine and

declare a table’s schema before inserting data, MongoDB’s collections do not enforce document

structure. This flexibility facilitates the mapping of documents to an entity or an object. Each doc-

ument can match the data fields of the represented entity, even if the data has substantial variation.

In practice, however, the documents in a collection share a similar structure.

Figure 3.2: A MongoDB document with 4 fields and values of types text, number and list.

MongoDB stores data in the form of documents, which are JSON-like field and value pairs.

Documents are analogous to structures in programming languages that associate keys with values,

where keys may hold other pairs of keys and values (e.g. dictionaries, hashes, maps, and associative

arrays). Formally, MongoDB documents are BSON documents, which is a binary representation of

JSON with additional type information. Figure 3.2 depicts a sample MongoDB document contain-

ing four fields: (a) a name with textual content, (b) an age with numeric content, (c) a status with

textual content, (d) a list of groups with textual content

MongoDB stores all documents in collections. A collection is a group of related documents that

have a set of shared common indexes. Collections are analogous to a table in relational databases.

Figure 3.3 depicts a collection of the previous described document.

Full Index Support

Indexes support the efficient execution of queries in MongoDB. Without indexes, MongoDB must

scan every document in a collection to select those documents that match the query statement.

3.2. MongoDB 19

Figure 3.3: A MongoDB collection of documents.

These collection scans are inefficient because they require MongoDB to process a larger volume of

data than an index for each operation.

Indexes are special data structures that store a small portion of the collection’s data set in an

easy to traverse form. The index stores the value of a specific field or set of fields, ordered by the

value of the field. Fundamentally, indexes in MongoDB are similar to indexes in other database

systems. MongoDB defines indexes at the collection level and supports indexes on any field or

sub-field of the documents in a MongoDB collection. Any field in a MongoDB document can be

indexed and secondary indices are also available.

If an appropriate index exists for a query, MongoDB can use the index to limit the number of

documents it must inspect. In some cases, MongoDB can use the data from the index to determine

which documents match a query.

Replication

Replication is the process of synchronizing data across multiple servers. Replication provides re-

dundancy and increases data availability. With multiple copies of data on different database servers,

replication protects a database from the loss of a single server. Replication also allows you to re-

cover from hardware failure and service interruptions. With additional copies of the data, you can

dedicate a server to disaster recovery, reporting, or backup.

In some cases, replication can be used to increase read capacity. Clients have the ability to

send read operations to different servers. You can also maintain copies in different data centers to

increase the locality and availability of data for distributed applications.

MongoDB provides high availability and increased throughput with replica sets. A replica set

consists of two or more copies of the data. Each replica may act in the role of primary or secondary

replica at any time. The primary replica performs all writes and reads by default. Secondary replicas

maintain a copy of the data on the primary using built-in replication. When a primary replica fails,

20 Chapter 3. Background

the replica set automatically conducts an election process to determine which secondary should

become the primary. Secondaries can also perform read operations, but the data is eventually

consistent by default.

A replica set is a group of MongoDB instances that host the same data set. One MongoDB

instance, the primary, receives all write operations. All other instances are secondary instances

and apply operations from the primary so that they have the same data set. Figure 3.4 presents the

interaction between the MongoDB instances in a replica set.

Figure 3.4: Default routing of reads and writes to the primary.

The primary accepts all write operations from clients. Replica sets can have one and only one

primary at any given moment. Because only one member can accept write operations, replica sets

provide strict consistency. To support replication, the primary records all changes to its data sets in

its operation log.

The secondaries replicate the primary’s operation log and apply the operations to their data sets.

Secondaries’ data sets reflect the primary’s data set. If the primary is unavailable, the replica set

will elect a secondary to be primary. By default, clients read from the primary; however, clients

can specify a read preference to send read operations to secondaries. See secondaries for more

information.

Sharding

Sharding is the process of storing data records across multiple machines and is MongoDB’s ap-

proach to meeting the demands of data growth. As the size of the data increases, a single machine

may not be sufficient to store the data nor provide an acceptable read and write throughput. Shard-

ing solves the problem with horizontal scaling. With sharding, you add more machines to support

3.2. MongoDB 21

data growth and the demands of read and write operations. Figure 3.4 presents an example of

sharding a large collection across 4 shards.

Database systems with large data sets and high throughput applications can challenge the ca-

pacity of a single server. High query rates can exhaust the CPU capacity of the server. Larger

data sets exceed the storage capacity of a single machine. Finally, working set sizes larger than the

system’s RAM stress the I/O capacity of disk drives.

Figure 3.5: Large collection with data distributed across 4 shards.

Sharding addresses the challenge of scaling to support high throughput and large data sets:

• Sharding reduces the number of operations handled by each shard. Each shard processes

fewer operations as the cluster grows. As a result, shared clusters can increase capacity and

throughput horizontally. For example, to insert data, the application only needs to access the

shard responsible for that records.

• Sharding reduces the amount of data that each server needs to store. Each shard stores less

data as the cluster grows. For example, if a database has a 1 terabyte data set, and there are

4 shards, then each shard might hold only 256GB of data. If there are 40 shards, then each

shard might hold only 25GB of data.

MongoDB distributes data, or shards, at the collection level. Sharding partitions a collection’s

data by the shard key. A shard key is either an indexed field or an indexed compound field that

exists in every document in the collection. MongoDB divides the shard key values into chunks

and distributes the chunks evenly across the shards. To divide the shard key values into chunks,

MongoDB uses either range based partitioning and hash based partitioning.

22 Chapter 3. Background

Querying

In MongoDB a query targets a specific collection of documents. Queries specify criteria, or con-

ditions, that identify the documents that MongoDB returns to the clients. A query may include

a projection that specifies the fields from the matching documents to return. You can optionally

modify queries to impose limits, skips, and sort orders.

An example query and the evaluation process can be seen in Figure 3.6:

Figure 3.6: The stages of a MongoDB query with a query criteria and a sort modifier.

File storage

MongoDB can be used as a file system, taking advantage of load balancing and data replication

features over multiple machines for storing files. The specification created for this purpose is called

GridFS and it is used for storing and retrieving files that exceed the BSON-document size limit of

16MB. GridFS is included with MongoDB drivers and available with no difficulty for development

languages.

MongoDB exposes functions for file manipulation and content to developers. Instead of storing

a file in a single document, GridFS divides a file into parts, or chunks, and stores each of those

chunks as a separate document. By default GridFS limits chunk size to 256k. GridFS uses two

collections to store files. One collection stores the file chunks, and the other stores file metadata.

In a multi-machine MongoDB system, files can be distributed and copied multiple times be-

tween machines transparently, thus effectively creating a load-balanced and fault-tolerant system.

When you query a GridFS store for a file, the driver or client will reassemble the chunks as needed.

3.2. MongoDB 23

You can perform range queries on files stored through GridFS. You also can access information

from arbitrary sections of files, which allows you to “skip” into the middle of a video or audio file.

GridFS is useful not only for storing files that exceed 16MB but also for storing any files for

which you want access without having to load the entire file into memory.

Aggregation

Aggregations are operations that process data records and return computed results. MongoDB

provides a rich set of aggregation operations that examine and perform calculations on the data

sets. Running data aggregation on the MongoDB instance simplifies application code and limits

resource requirements.

Like queries, aggregation operations in MongoDB use collections of documents as an input and

return results in the form of one or more documents.

Figure 3.7: Sample aggregation pipeline operation.

24 Chapter 3. Background

Aggregation Pipelines

Documents enter a multi-stage pipeline that transforms the documents into an aggregated result.

The most basic pipeline stages provide filters that operate like queries and document transforma-

tions that modify the form of the output document. An example aggregation pipeline operation is

presented in Figure 3.7.

Map/Reduce

Map-reduce [27] is a data processing paradigm for condensing large volumes of data into use-

ful aggregated results. For map-reduce operations, MongoDB provides the mapReduce database

command.

Consider the map-reduce operation shown in Figure 3.8:

Figure 3.8: Sample map-reduce operation.

In this map-reduce operation, MongoDB applies the map phase to each input document (i.e.

the documents in the collection that match the query condition). The map function emits key-value

pairs. For those keys that have multiple values, MongoDB applies the reduce phase, which collects

and condenses the aggregated data. MongoDB then stores the results in a collection. Optionally, the

3.3. Phonegap 25

output of the reduce function may pass through a finalize function to further condense or process

the results of the aggregation.

All map-reduce functions in MongoDB are JavaScript and run within the MongoDB process.

Map-reduce operations take the documents of a single collection as the input and can perform any

arbitrary sorting and limiting before beginning the map stage. Map-Reduce can return the results

of a map-reduce operation as a document, or may write the results to collections. The input and the

output collections may be sharded.

3.3 Phonegap

Phonegap is an web-based mobile development framework, based on the open-source Cordova

project. PhoneGap allows the use of standard web technologies such as HTML5, CSS3, and

JavaScript for cross-platform development, avoiding each mobile platforms’ native development

language. Applications execute within wrappers targeted to each platform, and rely on standards-

compliant API bindings to access each device’s sensors, data, and network status.

Examples of developers that can benefit from the use of PhoneGap are:

• a mobile developer who wants to extend an application across more than one platform, with-

out having to re-implement it with each platform’s language and tool set.

• a web developer who wants to deploy a web app that’s packaged for distribution in various

app store portals.

• a mobile developer interested in mixing native application components with a WebView

(browser window) that can access device-level APIs, or wants to develop a plugin interface

between native and WebView components.

Basic Components

PhoneGap applications rely on a common config.xml file that provides information about the app

and specifies parameters affecting how it works, such as whether it responds to orientation shifts.

This file adheres to the W3C’s Packaged Web App, or widget, specification.

The application itself is implemented as a web page, named index.html by default, that refer-

ences whatever CSS, JavaScript, images, media files, or other resources are necessary for it to run.

The app executes as a WebView within the native application wrapper, which you distribute to app

stores. For the web app to interact with various device features the way native apps do, it must also

reference a phonegap.js file, which provides API bindings. The PhoneGap-enabled WebView may

26 Chapter 3. Background

provide the application with its entire user interface. It can also be a component within a larger, hy-

brid application that mixes the WebView with native application components. PhoneGap provides

a plugin interface for these components to communicate with each other.

Development Paths

The easiest way to set up an application is to run the phonegap command-line utility, also known

as the command-line interface (CLI). Depending on the set of platforms that the developer wants

to target, he can rely on the CLI for progressively greater shares of the development cycle:

In the most basic scenario, the CLI is simply used to create a new project that is populated with

default configuration for the developer to modify. Once a mobile platform’s SDK is installed, the

applications can be compiled locally.

Adobe has also introduced PhoneGap Build server, allowing the developer to upload the source

code, while the system takes care of the compilation process in various platforms.

For many mobile platforms, the CLI can also be used to set up additional project files required

to compile within each SDK. For this to work, each targeted platform’s SDK needs to be installed

For the supporting platforms, the CLI can compile executible applications and run them in an

SDK-based device emulator. For comprehensive testing, one can also generate application files and

install them directly on a device.

At any point in the development cycle, the developer can also rely on platform-specific SDK

tools, which may provide a richer set of options. An SDK environment is more appropriate for the

implementation of a hybrid app that mixes web-based and native application components.

3.4 JavaScript

JavaScript is a dynamic computer programming language released by Netscape and Sun Microsys-

tems in 1995. It is most commonly used as part of web browsers, whose implementations allow

client-side scripts to interact with the user, control the browser, communicate asynchronously, and

alter the document content that is displayed. It is also being used in server-side programming, game

development and the creation of desktop and mobile applications.

JavaScript is a prototype-based scripting language with dynamic typing and has first-class func-

tions. It copies many names and naming conventions from Java, but the two languages are other-

wise unrelated and have very different semantics. The key design principles within JavaScript are

taken from the Self and Scheme programming languages. It is a multi-paradigm language, support-

ing object-oriented, imperative, and functional programming styles.

3.4. JavaScript 27

JavaScript has also significant support outside of web pages for example, in PDF documents,

site-specific browsers, and desktop widgets. Newer and faster JavaScript VMs and platforms built

upon them (notably Node.js) have also increased the popularity of JavaScript for server-side web

applications. On the client side, JavaScript was traditionally implemented as an interpreted lan-

guage but just-in-time compilation is now performed by recent browsers.

JavaScript was formalized in the ECMAScript [32] language standard and is primarily used as

part of a web browser (client-side JavaScript). This enables programmatic access to computational

objects within a host environment. As of 2011, the latest version of the language is JavaScript 1.8.5.

It is a superset of ECMAScript (ECMA-262) Edition 3. The following sections highlight the most

important features of JavaScript.

Dynamic typing

As in most scripting languages, types are associated with values, not with variables. For example,

a variable x could be bound to a number, then later rebound to a string.

Object-based

JavaScript is almost entirely object-based. JavaScript objects are associative arrays, augmented

with prototypes (see below). Object property names are string keys. They support two equivalent

syntaxes: dot notation (obj.x = 10) and bracket notation (obj[’x’] = 10). Properties and their values

can be added, changed, or deleted at run-time. Most properties of an object (and those on its

prototype inheritance chain) can be enumerated using a for...in loop. JavaScript has a small number

of built-in objects such as Function and Date.

Run-time evaluation

JavaScript includes an eval function that can execute statements provided as strings at run-time.

First-class functions

Functions in JavaScript are first-class citizens. They are complete objects themselves. As such,

they have properties and methods, such as call() and bind(). JavaScript also supports nested

functions. A nested function is a function that is defined within another function. It is created each

time the outer function is invoked. In addition, each created function forms a closure: the scope of

the outer function, including any constants, local variables and argument values, becomes part of

the internal state of each inner function object, even after execution of the outer function concludes.

28 Chapter 3. Background

Prototypes

JavaScript uses prototypes where many other object oriented languages use classes for inheritance.

It is possible to simulate many class-based features with prototypes in JavaScript [54].

Functions as object constructors

Functions double as object constructors along with their typical role. Prefixing a function call with

new will create an instance of a prototype, inheriting properties and methods from the constructor

(including properties from the Object prototype). ECMAScript 5 offers the Object.create method,

allowing explicit creation of an instance without automatically inheriting from the Object proto-

type (older environments can assign the prototype to null). The constructor’s prototype property

determines the object used for the new object’s internal prototype. New methods can be added by

modifying the prototype of the object used as a constructor. JavaScript’s built-in constructors, such

asArray or Object, also have prototypes that can be modified. While it is possible to modify the

Object prototype, it is generally considered bad practice because most objects in JavaScript will

inherit methods and properties from the Object prototype and they may not expect the prototype to

be modified.

Functions as methods

Unlike many object-oriented languages, there is no distinction between a function definition and a

method definition. Rather, the distinction occurs during function calling; when a function is called

as a method of an object, the function’s local this keyword is bound to that object for that invocation.

Type Composition and Inheritance

Whereas explicit function based delegation does cover composition in JavaScript, implicit delega-

tion already happens every time the prototype chain is walked in order to e.g. find a method that

might be related to but is not directly owned by an object. Once the method was found it gets called

within this object’s context. Thus inheritance in JavaScript is covered by a delegation automatism

that is bound to the prototype property of constructor functions.

Run-time environment

JavaScript typically relies on a run-time environment (e.g. a web browser) to provide objects and

methods by which scripts can interact with the environment (e.g. a webpage DOM). It also relies

on the run-time environment to provide the ability to include/import scripts (e.g. HTML <script>

3.4. JavaScript 29

elements). This is not a language feature per se, but it is common in most JavaScript implementa-

tions.

Variadic functions

An indefinite number of parameters can be passed to a function. The function can access them

through formal parameters and also through the local arguments object. Variadic functions can also

be created by using the apply method.

Array and object literals

Like many scripting languages, arrays and objects (associative arrays in other languages) can each

be created with a succinct shortcut syntax. In fact, these literals form the basis of the JSON data

format.

Regular expressions

JavaScript also supports regular expressions in a manner similar to Perl, which provide a concise

and powerful syntax for text manipulation that is more sophisticated than the built-in string func-

tions.

Asynchronous JavaScript and XML (AJAX)

In 1990’s user interaction in web applications was request-wait-response based, which slowed down

the user interaction considerably. The most web sites were based on complete HTML pages where

each user action required that the page should be re-loaded from the server. Each time a page was

reloaded due to a partial change, all of the content was re-sent instead of only the changed infor-

mation. This placed additional load on the server and use of excessive bandwidth. Asynchronous

JavaScript and XML (AJAX) [71, 38] came as a boon to the web application development, provid-

ing mechanisms for user experience similar to desktop applications.

In the classic web application model, addressed as pre-AJAX web model, user interaction trig-

gers an HTTP [33] request to the web server. The server performs necessary processing for exam-

ple, retrieving data or doing some calculations etc. When the processing is completed the server

returns an HTML [18] page to the client. The problem is that, during the server processing time,

the user can do nothing but wait for a page to be loaded or refreshed from the server.

AJAX increases the web page’s interactivity, speed, and usability in order to provide richer

user experience. AJAX places an AJAX engine between the client and server. This engine is

30 Chapter 3. Background

written in JavaScript and behaves like a hidden frame. The AJAX engine renders the user interface

and handles the communication between client and server. The client-server communication with

AJAX is asynchronous. Asynchronous communication means the client does not need to wait for

the server response. After sending the request to the server the execution in the client program does

not halt, rather the execution is continued. The response is sent to the client when it is available.

The AJAX engine sends requests to the server on behalf of the client and receives data or responses

from the server. In a web model with AJAX, the server sends small data instead of the HTML page.

The AJAX engine shows the received data or response by updating the page partially. Thus user is

free to do other interactions after sending a request to the server.

3.5 Elasticsearch

Elasticsearch [3] is a flexible and powerful open source, distributed, real-time search and analytics

engine. Architectured from the ground up for use in distributed environments where reliability

and scalability are must haves, it provides much more powerful functionality than simple full-

text search. Through its robust set of APIs and query DSLs, plus clients for the most popular

programming languages, Elasticsearch delivers on the near limitless promises of search technology.

Elasticsearch is a search server based on Lucene. It provides a distributed, multitenant-capable

full-text search engine with a RESTful web interface and schema-free JSON documents. It is

developed in Java and is released as open source under the terms of the Apache License. The first

version was released by Shay Banon on February 2010.

Elasticsearch can be used to search all kinds of documents. It provides scalable search, has near

real-time search, and supports multitenancy. Elasticsearch is distributed, which means that indices

can be divided into shards and each shard can have zero or more replicas. Each node hosts one or

more shards, and acts as a coordinator to delegate operations to the correct shard(s). Rebalancing

and routing are done automatically.

It is based on Lucene for the persistence of the data and tries to make all its features available

through the JSON and Java API. It supports faceting and percolating, which can be useful for

notifying if new documents match for registered queries.

Another feature is called ‘Gateway’ and handles the long term persistence of the index- i.e.

an index can be recovered from the Gateway in a case of a server crash. Elasticsearch supports

real-time GET requests, which makes it suitable as a NoSQL solution, but it lacks distributed

transactions.

3.6. Xuggler 31

3.6 Xuggler

Xuggler [11] is a Java library that allows developers to easily uncompress, modify, and re-compress

any media file or stream. It is built on top of the FFMPEG 1 and is provided under the Lesser GNU

Public License. We have used it in our systems in order to manipulate video and audio files and

produce thumbnails.

3.7 Redis

Redis [8] is an open-source, networked, in-memory, key-value data store with optional durability.

It is often referred to as a data structure server since keys can contain strings, hashes, lists, sets

and sorted sets. Redis supports atomic operations on these types, like appending to a string; incre-

menting the value in a hash; pushing to a list; computing set intersection, union and difference; or

getting the member with highest ranking in a sorted set.

In order to achieve its outstanding performance, Redis works with an in-memory dataset. De-

pending on your use case, you can persist it either by dumping the dataset to disk every once in a

while, or by appending each command to a log. Redis also supports trivial-to-setup master-slave

replication, with very fast non-blocking first synchronization, auto-reconnection on net split and so

forth. Other features include Transactions, Pub/Sub, Lua scripting, Keys with a limited time-to-live,

and configuration settings to make Redis behave like a cache.

Finally, Redis is available for the most programming languages.

1http://ffmpeg.org/

http://ffmpeg.org/

Chapter 4

The Natural Europe project

This chapter presents the Natural Europe project, which was the main influence for this job. Having

worked on designing and building the whole technical infrastructure for the project, we were able

to identify the most important requirements in the context of biodiversity. Moreover, we realized

the limitations of the supported model and the platform, which drove the identification of the new

requirements that are presented and met in this thesis.

The Natural Europe project [10, 65, 50] offers a coordinated solution at European level that aims

to overcome the aforementioned barriers, making the natural history heritage available to formal

and informal learning processes. Its main objective is to improve the availability and relevance

of environmental cultural content for education and life-long learning use, in a multilingual and

multicultural context. Cultural heritage content related to natural history, natural sciences, and

natural/environmental preservation is collected from six Natural History Museums around Europe

into a federation of European Natural History Digital Libraries, directly connected with Europeana.

The Natural Europe project offers appropriate tools and services that allow the participating

NHMs to: (a) uniformly describe and semantically annotate their content according to international

standards and specifications, (b) interconnect their digital libraries, and (c) expose their Cultural

Heritage Object (CHO) metadata records to Europeana.eu and BioCASE/GBIF.

The Biological Collection Access Service for Europe (BioCASE) [16] is a transnational net-

work of biological collections of all kinds, while the Global Biodiversity Information Facility

(GBIF) [5] is an open infrastructure which provides a single point of access to global biodiver-

sity data.

This chapter describes the Natural Europe Cultural Environment, i.e., the infrastructure and

toolset deployed on each NHM allowing their curators to publish, semantically describe, manage

and disseminate the CHOs that they contribute to the project.

34 Chapter 4. The Natural Europe project

4.1 The Natural Europe Cultural Environment (NECE)

The Natural Europe Cultural Environment (NECE) [48] is a node in the cultural perspective of

the Natural Europe project architecture [49]. It refers to the toolset deployed at each participating

NHM, consisting of the Multimedia Authoring Tool (MMAT), the CHO Repository and the Vocab-

ulary Server, facilitating the complete metadata management life-cycle: ingestion, maintenance,

curation, and dissemination of CHO metadata. NECE also specifies how legacy metadata are mi-

grated into Natural Europe. Figure 4.1 presents the architecture of Natural Europe with a focus on

the Natural Europe Cultural Environment.

Figure 4.1: The Natural Europe Architecture.

In the Natural Europe context, the participating NHMs provide metadata descriptions about

a large number of Natural History related CHOs. These descriptions are semantically enriched

with Natural Europe shared knowledge (vocabularies, taxonomies, etc.) using project provided an-

notation tools and services. The enhanced metadata are aggregated by the project, harvested by

Europeana (to become available through its portal) and exploited for educational purposes. Fur-

thermore, they are exposed to the BioCASE/GBIF networks, contributing their high quality content

to biodiversity communities.

The following sections present the Natural Europe CHO Application Profile, as well as the

architectural components of NECE (i.e., Multimedia Authoring Tool, CHO Repository and Vocab-

ulary Server), focusing on their internal functionality.

4.1.1 The Natural Europe CHO Application Profile

The Natural Europe CHO Application Profile is a superset of the Europeana Semantic Elements

(ESE) [4] metadata format. It has been developed through an iterative process involving the NHMs’

4.1. The Natural Europe Cultural Environment (NECE) 35

domain experts and the technical partners of the project, driven by the needs and requirements of

the stakeholders and the application domain of the project. The Natural Europe CHO Application

Profile describes 3 main element categories for each CHO.

The Cultural Heritage Object (CHO) metadata category provides information about the analog

resource or born digital object. It is composed of the following sub-categories: (a) the Basic in-

formation, dealing with descriptive information about the Cultural Heritage Object, (b) the Species

information is applicable to describe information related to the species of a described specimen

(animals, plants, minerals, rocks, etc.), and (c) the Geographical information contains metadata

about the location in which a specimen has been collected.

The Digital Object metadata category provides information about a digital or digitized resource.

It contains the following sub-categories: (a) the Basic information deals with general descriptive

information about a digital or digitized resource, (b) the Content information holds the physical

characteristics and technical information exclusive to a digital or digitized resource, and (c) the

Rights information describes the intellectual property rights and the accessibility to a digital or

digitized resource.

The Meta-metadata category provides metadata information for a CHO record. These include

the creator of the record, the languages that appear in the metadata, etc. Additionally, it describes

the history of the record during its evolution in the MMAT, including the operations and entities

that affected it.

4.1.2 The MultiMedia Authoring Tool (MMAT)

The Multimedia Authoring Tool (MMAT) 1 is the first step towards allowing the connection of dig-

ital collections with Europeana and BioCASE/GBIF. It is a multilingual web-based management

system for museums, archives and digital collections, which facilitates the authoring and meta-

data enrichment of cultural heritage objects. MMAT establishes interoperability between NHMs,

cultural heritage and biodiversity networks. Moreover, it supports seamless ingestion of legacy

metadata.

MMAT supports a rich metadata element set, the Natural Europe CHO Application Profile,

as well as a variety of the most popular multimedia formats. Its main features include the publi-

cation of multimedia objects, the semantic linkage of the described objects with well-established

controlled vocabularies, and the real-time collaboration among end-users with concurrency control

mechanisms. Additionally, it provides the means to directly import the museums’ legacy meta-

data for further enrichment and supports various types of users with different access rights. The

1MMAT demo version: http://natural-europe.tuc.gr/mmat

http://natural-europe.tuc.gr/mmat

36 Chapter 4. The Natural Europe project

Figure 4.2: The Multimedia Authoring Tool Architecture.

three types of user that are currently supported are: (a) the administrators, able to manage the user

accounts and the application, (b) the curators, administering CHO records/collections, and (c) the

simple users, allowed only to inspect the data.

MMAT has been built as a Rich Internet Application, offering engaging experience and in-

creased productivity. It adopts the Google Web Toolkit (GWT) [?] technology that enables web

applications to perform part of their business logic into the client side and part on the server side.

The client side refers to the business logic operations performed within a web browser running on

a user’s local computer, while the server side refers to the operations performed by a web server

running on a remote machine. The overall architecture of MMAT is presented in Figure 4.2. Addi-

tionally, Figure 4.3 contain two screenshot of the tool.

Figure 4.3: Screenshots presenting the graphical user interface of MMAT.

4.1. The Natural Europe Cultural Environment (NECE) 37

4.1.3 The CHO Repository

The CHO Repository handles both content and metadata and adopts the OAIS Reference Model

[12] for the ingestion, maintenance and dissemination of Information Packages (IPs). To this end, it

accommodates modules for the ingestion, archival, indexing, and accessing of CHOs, CHO records/

collections etc. This functionality refers to a complete information preservation lifecycle, where the

producer is the MMAT and the consumers are the MMAT, the harvester application of the Natural

Europe federal node and the BioCASE/GBIF networks. Figure 4.4 presents the overall architecture

of the CHO Repository with emphasis to its internal software modules.

Figure 4.4: The CHO Repository Architecture.

The Ingestion Module is responsible for the ingestion of an information package (i.e., CHOs,

CHO records, CHO collections, and user information) in order to store it as a new Archival Infor-

mation Package (AIP) to the repository, or to update/delete an already existing AIP.

The Archival Module receives AIPs from the Ingestion Module for storage purposes, as well

as AIP retrieval requests from the Access Module for dissemination purposes. In order to support

storage and retrieval operations, it employs a DB Storage/Retrieval Manager component which is

implemented in a flexible way for supporting any DBMS (relational, XML). A dedicated eXist

DB Storage/Retrieval Manager has been implemented, supporting database specific storage and

retrieval operations in an eXist XML DB instance, using XQuery/XML.

The Indexing Module receives AIPs from the Archival Module in order to build and maintain

AIP index structures, as well as AIP retrieval requests from the Access Module for dissemination

purposes.

The Access Module provides services allowing Dissemination Information Package (DIP) con-

sumers (i.e., MMAT, the harvester application of the Natural Europe federal node, the BioCASE/

GBIF networks and other external applications) to request and receive information stored in the

CHO Repository. It provides functionality for receiving information access requests, while apply-

ing access control policies through the Access Control component. Furthermore, it exploits any

38 Chapter 4. The Natural Europe project

available indices maintained by the Indexing module in order to retrieve the requested AIPs.

4.1.4 The Vocabulary Server

The Vocabulary Server manages the vocabularies and authority files used during the semantic anno-

tation process. Authority files refer to information about organizations, persons and places, while

vocabularies refer to the taxonomies used for the enrichment of the CHO metadata. Vocabulary

Server is also responsible for the indexing and retrieval of authority and taxonomic information,

allowing us to provide fast auto-complete functionality to MMAT end users. This saves time from

the curation process, increasing user productivity and providing error prevention during semantic

annotation. For this purpose, the server employs a Lucene/Solr instance, managing the indexing

and querying of data.

The semantic annotation of resources is a strong requirement for any system supporting meta-

data editing within a museum. Apart from the use of controlled vocabularies during the annota-

tion process, it provides great cross-institution interoperability. To this end, the Vocabulary Server

has been developed to support any taxonomic classification that the museums might use. This is

achieved through the ingestion of taxonomies represented in SKOS format.

Simple Knowledge Organization System (SKOS) [52] is the leading format for the representa-

tion of thesauri, classification schemes, taxonomies, or any other type of controlled vocabularies. It

is based on the Semantic Web principles and therefore enables the smooth transition of data to RDF.

The exploitation of well-established SKOS vocabularies during the annotation process, provides a

solid basis for the production of linked data, and subsequently an additional dissemination channel

towards the Linked Data communities.

Figure 4.5: An example of the Catalogue of Life SKOSified data in the form of a graph.

A vocabulary that was extensively used in the context of Natural Europe was the Catalogue

of Life (CoL), which is the most comprehensive catalogue of living species, containing over 1.4

million species along with their relationships. It is widely used in biological classification and

4.2. The metadata management life-cycle 39

serves as an important point of reference for many institutions, including Natural History Museums.

CoL offers a web-based system for browsing the species taxonomy, as well as a set of web services

for searching. However, CoL lacks support for persistent URIs able to be referenced by external

applications, as well as SKOS representation of its data. Towards this end, we worked on a method

of exposing the taxonomy of CoL to SKOS, using the CoL annual checklist and a D2R Server [?].

The features of SKOS that we employed are: (a) the class Concept, and (b) the properties broader,

narrower, prefLabel and altLabel.

The first step in the process was the representation of all the taxonomic nodes as Concepts.

The scientific name of each node was transformed into a prefLabel, and the common names into

altLabels. Finally, the taxonomic hierarchy was retained by connecting parent and child nodes

using the properties broader and narrower. An example of the CoL SKOSified data is shown in

Figure 4.5.

4.2 The metadata management life-cycle

The complete life-cycle that NECE defines for the metadata management comprises four phases:

(a) pre-ingestion, (b) ingestion, (c) maintenance, and (d) dissemination.

During the pre-ingestion phase (preparatory phase) each NHM selects the CHO records/collections

that will be contributed to the project and ensures that they will be appropriately migrated into Nat-

ural Europe. This includes the web publishing of CHOs along with their respective thumbnails, and

the metadata unification of existing CHO metadata. Publishing of CHOs refers to the uploading of

CHO descriptions on the museum’s website, or simply to the uploading of digital object thumbnails

to a web server. The most important part of this step is the acquisition of a persistent URI for each

resource. The web publishing of media files, the creation of thumbnails and the assignment of per-

sistent URIs can be undertaken by MMAT. On the other hand, the metadata unification of existing

CHO metadata is performed by preparing XML records conforming to the Natural Europe CHO

Application Profile. This step can be easily carried out by any well-known legacy database system

and even from Excel documents.

During the ingestion phase any existing CHOs and CHO metadata are imported to the Nat-

ural Europe environment. The latter are further enriched through a semantic annotation process.

MMAT provides functionality for loading metadata conforming to the Natural Europe CHO Appli-

cation Profile, as well as CHOs into its underlying repository. Afterwards, museum curators have

the ability to inspect, modify, or reject the imported CHO descriptions. As far as the ingestion

through the normal metadata curation/annotation activity is concerned, MMAT allows museum cu-

rators to maintain (create/view/modify/enrich) CHO metadata. This is facilitated by the access and

40 Chapter 4. The Natural Europe project

concurrency control mechanisms, ensuring security, integrity, and consistency of the content.

The maintenance phase refers to the storage and management of CHOs and CHO metadata

using MMAT and the CHO Repository. It addresses policies related to the integrity, authenticity

and chain of custody. Integrity of data is guaranteed by performing full and incremental database

backups on a weekly and daily basis respectively. These backups are persisted on remote machines

and provide the means to overcome any failure on the servers hosting the systems with minimum

loss. Concerning authenticity and chain of custody, both are controlled by the system’s logging

mechanism keeping track of actions/changes on the CHO records/collections, along with informa-

tion about the user that performed each action/change. This enables rollback to previous states of

the CHO record/collection when required.

The dissemination phase refers to the controlled provision of the maintained metadata to third

party systems and applications, like the Natural Europe federal node and the BioCASE/GBIF net-

works. Metadata dissemination is mainly performed by the Access Module of the CHO Reposi-

tory, which provides functionality for receiving information access requests and replying in several

response formats, while applying various access control policies. It exposes (a) an OAI-PMH

interface for the selective harvesting of CHO metadata, (b) a service interface implementing the

BioCASE protocol, and (c) an OpenSearch endpoint. The OAI-PMH interface supports metadata

dissemination in DC and Natural Europe CHO Application Profile format.

4.3 Connection of the Natural Europe Cultural Environment with
BioCASE/GBIF

The Biological Collection Access Service for Europe (BioCASE) [16] is a transnational network of

biological collections of all kinds. It enables widespread unified access to distributed and hetero-

geneous European collections and observational databases using open-source, system independent

software and open data standards/protocols. Similarly, the Global Biodiversity Information Facility

(GBIF) [5] is an open infrastructure which provides a single point of access to global (world-wide)

biodiversity data.

In order for data providers to connect to BioCASE, they have to install the BioCASE Provider

Software. This software offers an XML data binding middleware for publishing data residing in re-

lational databases to BioCASE. The information is accessible as a web service and retrieved through

BioCASE protocol requests. The BioCASE protocol 2 is based on the ABCD Schema [17], which

is the standard for access and exchange of data about specimens and observations. Furthermore,

2http://www.biocase.org/products/protocols/

http://www.biocase.org/products/protocols/

4.3. Connection of the Natural Europe Cultural Environment with BioCASE/GBIF 41

this protocol is supported (among others) by GBIF for accessing data from its providers.

Figure 4.6 presents an overview of the BioCASE architecture. On the top left resides the Bio-

CASE portal, backed up by a central cache database, accessing information from the data providers

(bottom). The BioCASE Provider Software (wrapper) is attached on top of each provider’s database,

enabling communication with the BioCASE portal and other external systems like GBIF. This

wrapper is able to analyze BioCASE protocol requests and transform them to SQL queries using

some predefined mappings between ABCD concepts and table columns. The SQL queries are exe-

cuted over the underlying database and the results are delivered to the client after being transformed

to an ABCD document.

Figure 4.6: The BioCASE Architecture.

Although BioCASE supports a variety of RDBMSs, it does not support non-SQL databases.

This is also the case of MMAT, which is backed by an eXist XML Database. To address this prob-

lem, we have built and installed a customized wrapper to the Access Module of the data providers’

CHO Repositories (Fig. 4.7). The wrapper is able to analyze BioCASE protocol requests and trans-

form them to XQueries, exploiting mappings between the Data Provider’s schema ABCD. Towards

this end, a draft mapping of the Natural Europe CHO Application Profile to ABCD was produced

based on BioCASE practices. The XQueries are executed over the providers’ repositories and the

results are delivered to the client after being transformed to an ABCD document.

Figure 4.7: Connecting Natural Europe Cultural Environment with BioCASE/GBIF.

Although, the wrapper has been implemented for the XML databases of Natural Europe, it is

42 Chapter 4. The Natural Europe project

able to support any underlying database either relational or XML with minimum effort. To this end,

it follows a modular multi-tier architecture consisting of the following layers:

• The Service Layer controls the communication between the data provider and the BioCASE

Portal by implementing the BioCASE protocol. It exposes services that comply to the Bio-

CASE protocol specification, while concealing the wrapper’s business logic. The basic sys-

tem services are: (a) the Search Service, enabling complex query execution, based on ABCD

concepts, over a data provider’s database, (b) the Scan Service, supporting the retrieval of

unique values for a given ABCD concept, and (c) the Capabilities Service, providing useful

information about the ABCD concepts that can be used for searching in a data provider’s

database.

• The Business Logic Layer consists of three basic modules: (a) the Query Deserialization

Module, handling the deserialization of the submitted queries to database-specific format,

(b) the Mapping Management Module, administering the mappings between ABCD (used

by the BioCASE Protocol) and the data provider’s schema, and (c) the Results Serialization

Module, managing the transformation of query results to an ABCD document, utilizing the

mappings provided by the Mapping Management Module.

• The Data Layer provides simplified access to the data stored in the persistent storage.

Changes in the persistent storage can be easily supported by providing a new implementation

of the Query Deserialization Module, based on the query language supported by the new persis-

tent storage and the underlying data structure. To this end, the module has been designed using

the principles of the plugin pattern and is therefore able to automatically recognize new module

implementations. On the other hand, changes in the mappings between the ABCD and the data

provider’s schema can be addressed by modifying the wrapper’s configuration files.

The source code of our implementation has been contributed to BioCASE and our approach

has been successfully tested by their technical staff. Until the actual connection of the Natural

Europe federated nodes (data providers) to the BioCASE/GBIF networks is established, we have

deployed a local BioCASE portal installation able to retrieve CHOs from all federated node CHO

Repositories 3.

4.4 Deployment and usage

In order to facilitate the deployment of the MMAT, the CHO Repository and the Vocabulary Server

in any museum, we have compiled a packaged version of the whole infrastructure which can be
3http://natural-europe.tuc.gr/biocase

http://natural-europe.tuc.gr/biocase

4.4. Deployment and usage 43

Table 4.1: The number of CHOs annotated by each NHM using MMAT.

Natural History Museums (NHMs) Cultutal Heritage Objects (CHOs)
Images Videos Sounds Texts 3D TOTAL

Natural History Museum of Crete (NHMC) 3,840 13 0 157 0 4,010

National Museum of Natural History of Lis-
bon (MNHNL)

1,934 37 30 653 32 2,686

Jura-Museum Eichstätt (JME) 1,214 42 115 287 0 1,658

Arctic Center (AC) 480 0 0 0 0 480

Hungarian Natural History Museum
(HNHM)

2,418 51 0 1,770 5 4,244

Estonian Museum of Natural History
(TNHM)

1,736 100 0 136 0 1,972

TOTAL 11,622 243 145 3,003 37 15,050

hosted on any server. This allows for rapid deployment of the tools by less experienced people.

Moreover, all the components have been built as separate modules, which means that in the case of

a new version they can be updated individually.

The infrastructure has been deployed in the six NHMs participating in the project, allowing the

curators to publish, semantically describe, manage and disseminate a large volume of CHOs. The

participating museums are: (a) Natural History Museum of Crete (NHMC), (b) National Museum

of Natural History of Lisbon (MNHNL), (c) Jura-Museum Eichstätt (JME), (d) Arctic Center (AC),

(e) Hungarian Natural History Museum (HNHM), and (f) Estonian Museum of Natural History

(TNHM). Table 4.1 presents the number of CHOs that have already been published by each NHM

using MMAT.

Improvements on the user-interface have been made after continuous feedback from museum

partners in a number of tool releases. Heuristic evaluation of the MMAT was performed, while

extensive usability studies have been performed in a number of curator workshops organized by the

participating NHMs.

Summary

In this chapter we presented the architecture, deployment and evaluation of the infrastructure used

in the Natural Europe project, allowing curators to publish, semantically describe, and manage the

museums’ CHOs, as well as disseminate them to Europeana and to BioCASE/GBIF networks. This

infrastructure consists of the Multimedia Authoring Tool, the CHO Repository and the Vocabulary

44 Chapter 4. The Natural Europe project

Server. It is currently used by six European NHMs participating in the Natural Europe project,

providing positive feedback regarding the usability and functionality of the tools. Until today, a

large number of CHOs has already been published.

Chapter 5

Functional Specification

This chapter describes the functional specification of the system that has been developed for the

management of the lifecycle of the observations and their metadata. It specifies the stakeholders of

the system, lists the technical requirements that had to be met for achieving the desired functionality

and provides an in depth analysis of the system’s functionality.

Section 5.1 presents the system’s stakeholders and their role in the system, while Section 5.2

discusses the technical requirements of the tool. Finally, Section 5.3 provides the functionality that

has to be provided by the system in the form of use cases.

5.1 Stakeholders

Our framework is targeted for organizations that want to provide users with the ability to create

and contribute day-to-day observations about the objects that they come across and are of their

interest. Although our basic target is the biodiversity context, the framework has been designed

with extensibility in mind, to allow the support of other contexts as well. In any case, the system

stakeholders are:

• The organizations that will collect and hold the data will be able to use the observations

to reach meaningful conclusions regarding the changes in the population or the changes of

habits of species.

• The domain experts experts will gain knowledge based on the observations collected by the

users.

• The common users will use the systems to search, review and provide the observations and

the objects. This will enable them to expand their knowledge and experiences in identifying

46 Chapter 5. Functional Specification

species that interest them. Moreover, taking into consideration the observations made by

others, they can discover objects that they would not be able to find otherwise.

5.2 Technical Requirements

This section discusses the technical requirements that were identified and set for the development

of the model and the systems. The requirements have been split in 5 categories and are summarized

below. Section 5.2.1 describes the requirements of the Model. Section 5.2.2 describes the require-

ments of the Meta-Model used to implement custom Application Profiles. Section 5.2.3 describes

the requirements of the Mobile Application, and Section 5.2.4 describes the requirements of the

Web Application. Finally, Section 5.2.5 describes the requirements of the system’s backend.

5.2.1 Model

As we have already mentioned, a strong requirement that we set for our infrastructure is that it

should not be bound to a single context. Instead, it should be configurable so that it can support any

domain with the specification of different Application Profiles. However, we have identified three

entities that form the base of our model. These are:

• Observation: An observation is the cornerstone of our model. It is considered a single

occurrence at a specific time and place that the user witnesses and reports.

• Object: An object is the item or the fact that is being ‘observed’ by the user.

• Multimedia: The multimedia objects optionally follow the observations and the objects.

They can be of the types: images, videos, sounds.

Some examples describing contexts that the model can apply are:

• Biodiversity observations about species: In the biodiversity context, this infrastructure aims

to alleviate the need for experts capturing biodiversity information which is an extremely

slow process due to the limited number of experts and the limited funding in the area. Ob-

jects need to be the nodes from the taxonomy of species that is supported. Observations are

the sightings of the species (object) at a specific location and time. Alternatively, objects

can represent events in nature (e.g. hunting, mating). In this case the main focus is the re-

ports of the sightings of an animal or a plant and enrich them with some visual information

(multimedia).

5.2. Technical Requirements 47

• Earthquake observations: Objects will need to be the earthquakes (along with the metadata

concerning the size, depth, location, casualties, etc...). This is basically an ‘event’, described

as an object. Observations will be the photos captured by users during or after the event

‘earthquake’. These will be connected with the specific earthquake (object). In this case we

focus on reporting the outcome/damages of earthquakes. We basically form collections of

observations and each collection refers to an earthquake.

• Road Accidents: Objects will be the accidents with information about the type, number of

people involved, etc. In this case the objects will need to have a gps point. Observations will

be the pictures taken from people passing by along with a description. They will have gps

location from different positions/angles. In this case we focus on reporting the accidents and

enrich them with some multimedia.

5.2.2 Meta-Model

The Meta-model should define the way that the objects and the observations are created, populated

and presented. Moreover, it must determine the way that these are searched by the users and other

systems.

In more detail, there need to be various types of objects and observations, depending on the

context of the system. The Application Profile that derive from the Meta-Model should describe

all the types of both objects and observations, and contain one or more attributes for each of them.

Each ‘attributes’ in the model needs to have at least a name and a description. Furthermore, for

each attribute we need to be able to specify it’s multiplicity (e.g. how many times it can exist

in the metadata), and it’s obligation (e.g. if it’s required to exist for the description to be valid).

Additionally, we need to have different types of attributes, like text, number, list, geolocation, date,

etc. Each of the attributes also needs to have more ‘options’ specified, depending on it’s type, e.g.,

the list selection needs to have the list of the possible values.

5.2.3 Mobile Application

The mobile application needs to be compatible with most state-of-the-art mobile devices. A prob-

lem with this is the fact that different device vendors provide different own Framework for the

development of applications compatible with their devices. Most of these are using completely

different programming languages. To this end, we decided to base our application on HTML5

and Javascript, eliminating the need for porting the code in different platforms and programming

languages to provide support for different devices.

48 Chapter 5. Functional Specification

The application should also be native rather than web, so that the user can create a launch

icon and use it just like normal native applications instead of opening the browser on his device

and browse to the url. In addition, when the device is not connected to the internet, using native

apps is a better fit to the user’s state of mind. Although latest standards in HTML5 allow the

offline usage of web applications, they still require the user to launch a browser in order to use the

application. The requirement for making a web application operate natively on mobile devices has

risen from the very beginning of mobile device programming. Although many platforms have been

developed to provide this functionality and they each have advantages and disadvantaged [41], we

used ‘Phonegap’, which is the most popular among them.

The features of the native mobile application should include:

• Compatible with most state-of-the-art mobile devices/platforms.

• Real-time creation of observations based on the application profiles.

• Real-time creation of objects based on the application profiles.

• Image/Video/Audio capturing, along with any metadata provided by the mobile device capa-

bilities.

• Offline capturing of observations and their enrichment with the appropriate metadata depend-

ing on the application profiles. The observations will be kept temporarily on the device and

persisted on the server when internet is available.

• Visualize the observations on maps.

• Allow the user to perform basic searching on the observations/objects.

5.2.4 Web Application

The web application needs to be compatible with state-of-the-art standards. To this end it should

be based on HTML5 and Javascript. Moreover, we need to support both desktop computers and

mobile devices. In the case of the mobile devices, the interfaces and the features must be similar

with those described in Section 5.2.3. In the desktop version of the web application, the users must

be provided with the same functionality, but with interfaces optimized for big screens. Additionally,

the administrators need to manage the system from an administrator interface. To summarized, the

features needed are:

• Compatible with state-of-the-art web standards.

• Management of observations based on the application profiles.

5.3. Use Cases 49

• Management of objects based on the application profiles.

• Administration interfaces

• Visualization of the observations on maps.

• Searching functionality for observations and objects.

5.2.5 Backend

The backend of our system needs to support all server platforms. Moreover, the features needed to

be supported are:

• Compatible with state-of-the-art standards.

• Persistence of objects and observations based on the application profiles.

• Restful web services for allowing the access of the data from external applications.

• Publishing the multimedia that are uploaded by the users.

• Creation of thumbnails for the multimedia.

• Efficient searching on the data.

5.3 Use Cases

This section contains the use cases that we have identified for the system. The use cases have been

described following the methodology from Alistair Cockurn [26].

Table 5.1: Use Case 1: “Log in”

Use Case 1: “Log in”
Goal in Context The user wants to be logged into the system in order to

use the full system’s functionality.

Scope & Level System, Sub-function

Preconditions The user has already created an account to the system.
Trigger The user visits the application’s url without being already

logged in.

Description 1. The system displays the log in form.
2. User fills in the form with his credentials and selects
to log in.
3. The system validates the submitted form details,
checks if the user credentials are correct.

4. The system displays the first screen to the user.

50 Chapter 5. Functional Specification

Table 5.2: Use Case 2: “Logout”

Use Case 2: “Logout”

Goal in Context The user wants to be logged out from the system.

Scope & Level System, Sub-function

Preconditions The user is already logged in the system.

Trigger The user selects to logout from the system.

Description 1. The system logs the user out of the system.

2. The system displays the login screen.

Table 5.3: Use Case 3: “Create new account”

Use Case 3: “Create new account”
Goal in Context The user wants to create a new account so he can have

full access to the system’s functionality.

Scope & Level System, Sub-function

Preconditions The user is not logged in the system.

Trigger The user selects to create a new account in the system.
Description 1. The user fills the required information about his new

account.
2. The system validates the user’s input and creates a new
user which is persisted in the database.

Table 5.4: Use Case 4: “Create Object”

Use Case 3: “Create Object”

Goal in Context The user wants to create a new object.

Scope & Level System, Sub-function

Preconditions The user is already logged in the system.

Trigger The user selects to create a new object.
Description 1. The user browses to the list of objects with the same

type as the object he wants to create.

2. The user selects to create a new object from the menu.
3. The system presents the interface for the creation of
the new object, based on the application profile for the
object’s type.
4. The user fills the required information about the object
and uploads any available multimedia files.
5. The system validates the user’s input and creates a new
object which is persisted in the database.
6. The system presents the newly created object to the
user.

5.3. Use Cases 51

Table 5.5: Use Case 5: “Create Observation”

Use Case 5: “Create Observation”

Goal in Context The user wants to create a new observation.

Scope & Level System, Sub-function

Preconditions The user is already logged in the system.

Trigger The user selects to create a new observation.
Description 1. The user browses to the list of observation with the

same type as the observation he wants to create.
2. The user selects to create a new observation from the
menu.
3. The system presents the interface for the creation of
the new observation, based on the application profile for
the observation’s type.
4. The user fills the required information about the obser-
vation and uploads any available multimedia files.
5. The system validates the user’s input and creates a new
observation which is persisted in the database.
6. The system presents the newly created observation to
the user.

Table 5.6: Use Case 6: “Update Object”

Use Case 6: “Update Object”

Goal in Context The user wants to update the metadata of an object.

Scope & Level System, Sub-function

Preconditions The user is already logged in the system.

Trigger The user selects to update an existing object.

Description 1. The user browses through the list of objects.
2. The user selects an object from the list and reviews it’s
metadata.

3. The user selects to edit the object.
4. The system presents the interface for editing the object,
based on the application profile for the object’s type.

5. The user makes the required changes to the object.
6. The system validates the user’s input and updated the
object metadata in the database.

7. The system presents the updated object to the user.

52 Chapter 5. Functional Specification

Table 5.7: Use Case 7: “Update Observation”

Use Case 7: “Update Observation”

Goal in Context The user wants to update the metadata of an observation.

Scope & Level System, Sub-function

Preconditions The user is already logged in the system.

Trigger The user selects to update an existing observation.

Description 1. The user browses through the list of observation.
2. The user selects an observation from the list and re-
views it’s metadata.

3. The user selects to edit the observation.
4. The system presents the interface for editing the ob-
servation, based on the application profile for the obser-
vation’s type.
5. The user makes the required changes to the
observation.
6. The system validates the user’s input and updated the
observation metadata in the database.
7. The system presents the updated observation to the
user.

Table 5.8: Use Case 8: “Delete Object”

Use Case 8: “Delete Object”

Goal in Context The user wants to delete an object.

Scope & Level System, Sub-function

Preconditions The user is already logged in the system.

Trigger The user selects to delete an existing object.

Description 1. The user browses through the list of objects.
2. The user selects an object from the list and reviews it’s
metadata.

3. The user selects to delete the object.

4. The system asks for confirmation from the user.
5. The system removes the object and it’s metadata from
the database.
6. The system notifies the user of the successfull deletion
of the object.

5.3. Use Cases 53

Table 5.9: Use Case 9: “Delete Observation”

Use Case 9: “Delete Observation”

Goal in Context The user wants to delete an observation.

Scope & Level System, Sub-function

Preconditions The user is already logged in the system.

Trigger The user selects to delete an existing observation.

Description 1. The user browses through the list of observations.
2. The user selects an observation from the list and re-
views it’s metadata.

3. The user selects to delete the observation.

4. The system asks for confirmation from the user.
5. The system removes the observation and it’s metadata
from the database.
6. The system notifies the user of the successfull deletion
of the observation.

Table 5.10: Use Case 10: “Create new type of Objects/Observations”

Use Case 10: “Create new type of Objects/Observations”
Goal in Context The user wants to add a new type of objects / observation

to the system, based on the application profile.

Scope & Level System, Sub-function
Preconditions The user is already logged in the system and has admin-

istrator privileges.

Trigger The user selects to create a new type of Objects.
Description 1. The user browses through the list of application profile

types.
2. The user selects to create a new application profile
type.

3. The system presents the new type form.
4. The user completed the form depending on his needs
and submits it.
5. The system validates the user’s input and creates a new
object type which is persisted in the database.
6. The system presents the newly created object type to
the user.

54 Chapter 5. Functional Specification

Table 5.11: Use Case 11: “Update user profile”

Use Case 11: “Update user profile”

Goal in Context The user wants to update his profile.

Scope & Level System, Sub-function

Preconditions The user is already logged in the system.

Trigger The user selects to update his profile.
Description 1. The user updates the information presented in his pro-

file page.
2. The system validates the user’s input and persists the
updated profile in the database.

3. The system presents the updated user’s profile.

Table 5.12: Use Case 12: “Review Observations of a specific Object”

Use Case 12: “Review Observations of a specific Object”
Goal in Context The user wants to view all the observations that have been

made for a specific object.

Scope & Level System, Sub-function

Preconditions The object exists in the system.

Trigger The user selects to view the object’s observations.
Description 1. The user finds the object that interests him and selects

to see it’s observations.
2. The system retrieved the observations that are con-
nected with the object, and presents them to the user.

Table 5.13: Use Case 13: “Review Multimedia of a specific Object”

Use Case 13: “Review Multimedia of a specific Object”
Goal in Context The user wants to view all the multimedia that have been

captured for a specific object.

Scope & Level System, Sub-function

Preconditions The object exists in the system.

Trigger The user selects to view the object’s multimedia.
Description 1. The user finds the object that interests him and selects

to see the respective multimedia.
2. The system retrieved the multimedia that are con-
nected with the object, and presents them to the user.

5.3. Use Cases 55

Summary

In this chapter we described the functional specification of the system that has been developed for

the management of the whole lifecycle of the observations and their metadata. We specified the

stakeholders of the system, listed the technical requirements that had to be met for achieving the

desired functionality and provided an in depth analysis for the system’s functionality along with the

use case tables.

Chapter 6

Model

This chapter describes the model developed for describing the observation that are supported by

our system. Moreover, the classes that it is comprised of are identified and presented. The chapter

has been split into two sections, Section 6.1 presents the Meta-Model that has been designed to

provide extensibility to the Model, and Section 6.2 presents the Model that enables the creation

of Observations that comply to our Meta-Model and the Application Profiles that derive from it.

Finally, Section 6.3 presents two example implementations for the Model and the Meta-Model for

a system that supports observations of plants.

6.1 Meta-Model

The Meta-Model defines the way that the objects and the observations are created, populated and

presented. Moreover, it determines the way that these are searched by the users and external sys-

tems. In more detail, the population and usage of the Application Profiles based on the Meta-Model

allow the existence of various types of objects and observations in the same instance of the system.

The Meta-Model describes all the types of both objects and observations, allowing the configuration

of different metadata for each type.

Figure 6.1 presents the Meta-Model in the form of a class diagram. The following sections

describe the classes that comprise it in detail.

Object Type

The Object Type class represents a single type of objects and observations that are supported by the

Application Profiles. Each profile contains one instance of this class, and further defines the way

that the metadata about the objects and the observations are populated.

58 Chapter 6. Model

Figure 6.1: The Meta-Model.

6.1. Meta-Model 59

The attributes that it holds are:

• key: the unique identifier for the Object Type. This will usually be the same as the name of

the type.

• name: the descriptive name of the Object Type, used in the user interface.

• description: a basic description for the contents of the attribute, used as a helping guide for

novice users.

Apart from these attributes, the Object Type aggregates all the attributes that are configured in

order to describe the Objects and the Observations of the type, which are depicted as the Object

and the Observation Attributes respectively.

Observation Attribute

The Observation Attribute represents a single attribute used in the description of the Observations

that are of a specific Object Type. The type of this attribute is further defined by the attributes that

it inherits from the class ‘Attribute Type’.

Object Attribute

The Object Attribute represents a single attribute used in the description of the Objects that are of

a specific Object Type. The type of this attribute is further defined by the attributes that it inherits

from the class ‘Attribute Type’.

Attribute Type

This Attribute Type class is the base class in the Application Profile, providing the extensibility

capabilities to the attributes of the Model. It represents any attribute that is used in the metadata

descriptions of both the Objects and the Observations. The attributes that it holds are:

• key: the unique identifier for the attribute and is also used as the key in the metadata of the

objects/observations when persisted in the database.

• label: the descriptive name of the attribute, used in the user interface.

• description: a basic description for the contents of the attribute, used as a helping guide for

novice users.

• type: defines the type of the attribute. This is mostly used in the user interfaces for the

creation of different user interface elements for different attribute types.

60 Chapter 6. Model

• order: defines the order of the attribute as it appears in the user interfaces.

• multivalued: defines if the attribute can appear multiple times in the metadata.

• required: defines if the attribute must be populated in order for the metadata of the object/ob-

servation to be valid.

Input Type

This abstract class has been created so as to provide future extensibility to the attributes. All the

different types of attributes extend this class, and can provide any additional options needed in order

to be best defined. Furthermore, all instances of the class Attribute Type contain an instance of this

class which specifies the type of the attribute.

Date Type

This type of attribute input type represents a date attribute in the metadata.

Text Type

This type of attribute input type enables textual information to exist as an attribute in the metadata.

Number Type

This type of attribute input type represents a numerical value.

URL Type

This type of attribute input type enables URLs to exist as an attribute in the metadata.

List Type

This type of attribute input type represents a list of attributes from which the user has to choose.

This requires an additional attribute for the specification of the list, which is a list of all the possible

values.

YesNo Type

This type of attribute input type represents a binary choice between ‘yes’ and ‘no’.

6.2. Model 61

GPS Type

This type of attribute input type represents a specific geographic point (GPS). It contains two at-

tributes for the latitude and the longitude of the geographic position.

6.2 Model

The Model developed and supported by our systems has been designed with extensibility in mind,

so as to be able to describe generic types of observations. These observations could be from single

points on the map, to complex descriptions of the observed items, containing multiple multimedia

objects.

The three base entities of the model are: Object, Observation and Multimedia. Figure 6.2

presents the Model in the form of a class diagram. On the top of the diagram we find a shorter

version of the Meta-Model that we previously defined. It is replicated here so the relationships

between the classes of the Model and the classes of the Application Profile are visible.

As an example, in the biodiversity context, the Observations relate to one or many species,

depicting a single occurrence of them in time and space. Object describe the items for which the

observations are made and the Multimedia files can follow Observations.

The domain experts will need to create the Objects of the system. Each object will represent an

entity for which the users can create observations. The following sections describe the classes of

the Model in more detail:

Object

This class represents the taxonomic classification of the objects for which the observations are

made. The data entry and management of the instances in this class will in most cases fall on the

domain experts.

As an example application, when supporting a system for nature observation concerning flora

and fauna, the objects would be the different kinds of plants or animals that the user can observe.

In this case the most fitting type of identification for objects is the scientific name along with the

common names of the species.

The Objects are followed by a descriptive label, uniquely identifying the object and optionally

any multimedia files available. Additionally, using the power of the application profiles supported

by the system, the objects can contain any additional metadata that the experts see fit, like a de-

scriptive text with information about the object, or a list of URLs where the user is able to find

further information about the object.

62 Chapter 6. Model

Figure 6.2: Model.

6.2. Model 63

Object Attribute

This class represents an attribute that follows an object, based on the application profile that the

object follows. Each instance of this attribute holds the key of the attribute as defined in the Appli-

cation Profile, and one or more values.

Observation Attribute

This class represents an attribute that follows an observation, based on the application profile that

the observation follows. Each instance of this attribute holds the key of the attribute as defined in

the Application Profile, and one or more values.

Observation

This class represents an occurrence of an Object that has been observed by a User, along with any

Multimedia files that he was able to provide.

Each observation contains at minimum a label, firmly describing the observed occurrence and

a timestamp, placing it on a specific point in time. Additionally, it contains geospatial information,

which is a GPS point. The observation is optionally connected to a single Object, marking its

occurrence. Moreover, it can contain additional attributes, depending on the application profile.

Multimedia

This class represents the multimedia objects that follow the Observations and the Objects. A multi-

media object can follow one observation, while a single observation can have multiple multimedia

objects attached to it (for example when there are shots from different angles on the same object,

or different types of multimedia like sound and picture)

The multimedia objects can be video, image, text or audio files captured with a mobile phone,

camera or any other capturing device. Each type of Multimedia is depicted as a different class,

holding it’s own descriptive attributes. The only attribute that is common in all

These objects can optionally have spatiotemporal information.

If they don’t have this data, they might be general images following an observation and we could

place them in the space-time point of the observation (since these are mandatory in the observation).

Another possibility could be that the multimedia objects have different spatial information than

the observation, in cases where the user captures objects in distance (in this case the user should

provide the input as to where the observation is relevant to his position). The metadata alongside

64 Chapter 6. Model

the images will be height and width, along with the orientation and tilt of the camera. The video

can additionally have starting and ending points and possible point in the between (Camera Point),

GPS Point

This describes the geospatial position of an observation. Latitude and longitude can be captured

by mobile devices or inserted by the user manually using an interactive map. The altitude can be

inferred from the other two properties using existing web services.

Camera Data

This class represents the data collected by the camera during the capturing of the multimedia, when

available. It will hold camera tilting when the device provides an accelerometer, the orientation

from the compass and all the additionally metadata provided (shutter speed, angle, etc.).

Camera Point

This class represents a specific instance of the camera in space. It contains both GPS Point and

Camera Data information. It aggregates information for the GPS Point and the Camera Data.

It was introduced in order to represent path of camera points in a video. Used in videos and

images only since the Camera Data can only apply to them.

Audio

This class represents the Multimedia that are of the type of audio. Optionally, it contains a GPS

Point with the location of the capturing.

Image

This class represents the Multimedia that are of the type of image. Optionally, it contains a Camera

Point with data about the location of the capturing and any additional information about the image.

Video

This class represents the Multimedia that are of the type of video. Optionally, it contains a list

of Camera Points with the data about the location of the capturing and any additional information

provided by the camera. The list of Camera Points can be used to capture and recreate the path that

the user took for the duration of the capturing.

6.3. Model Examples 65

User

This class represents the users of the system. The access level of the user is refined in the two

subclasses, Simple User and Administrator that are described below. The attributes that each user

has are the following:

• firstName: the given first name of the user.

• lastName: the last name of the user.

• email: the user’s email address.

• password: the password used for logging in the system.

• image: a profile image of the user.

Simple User

This class represents the general users of the system that have no administration privileges.

Administrator

This class represents the users of the system with administrator privileges. The users of this class

can access the administrative interface and update the system settings, as well as the application

profiles supported by the specific instance of the system.

6.3 Model Examples

This section presents two examples of the model of an imaginary system that supports observations

of plants and animals. The first step for an administrator of such a system would be to define the

Application Profiles for the plants and the animals, based on our meta-model.

At first we will need to support plants, so the Objects will represent the species of plants.

In general, it is up to the experts of the domain to define the common attributes between plant

species and the attributes required for their observations, but for the shake of simplicity we will try

and identify some basic attributes. Having define the Application Profile for the objects, we can

proceed by describing the profile that the observations will need to follow.

We first need to start with the attributes that are needed for the Objects. We need a label for the

Objects which will be the scientific name of the species as well as a descriptive text giving some

information about the plant. Moreover, we can add some URLs that link to websites with more

insight to the plants. As concerns the visual perception, we can have the color of the leafs of the

66 Chapter 6. Model

plants, as well as the color of the flowers or fruits when applicable. Finally, the countries that the

plant is mostly met and its lifespan are two common attributes that can be provided with all plants.

A more formal description of this profile is presented in Table 6.1.

Table 6.1: Example Application Profile for Plants. Each row represents an instance of the Object Attribute
Type and each column is an attribute of the class Attribute Type. For simplicity we did not include the order,
multivalued and required attributes

key label description type

label “Title” “The scientific name of the plant” text

description “Description” “A small description about the plant” text

url “External URL” “A URL where the user can get more infor-
mation about the object”

url

leaf_color “Leaf Color” “The normal color of the leafs of the plant” text

flower_color “Flower Color” “The normal color of the flowers or the
fruits of the plant (when applicable)”

text

commonly_found_in “Commonly found
country”

“A country where the plant is most com-
monly found”

list

lifespan “Lifespan (years)” “The average life of the plant” number

Having defined the Application Profile for the objects, we need to also define the format of

th observations. The attributes needed for the observations are: (a) a label for the observation,

(b) a bigger description, (c) the leaf color, (d) the flower color, (e) the height of the plant, (f) an

indication showing if the plant is flourished. A more formal description of this profile is presented

in Table 6.2.

Table 6.2: Example Application Profile for Observations about Plants. Each row represents an instance of
the Observation Attribute Type and each column is an attribute of the class Attribute Type. For simplicity we
did not include the order, multivalued and required attributes

key label description type

label “Title” “A small descriptive title for the observation” text

description “Description” “A small description about the observation” text

leaf_color “Leaf Color” “The color of the leafs of the observed plant” text

flower_color “Flower Color” “The color of the flowers or the fruits of the ob-
served plant (if applicable)”

text

height “Height (meters)” “The height of the plant in meters” number

flourished “Flourished” “Is the plant flourished?” yesno

Having described the Application Profile for the plants, we will present an instance of each of

the two classes, Object and Observation. The Object is presented in Figure 6.3, where we can see

the description of the plant “Lilium tsingtauense”, and Figure 6.4 presents an observation of this

6.3. Model Examples 67

plant in conformance to the Application Profile.

Figure 6.3: Model Example: Object for plant “Lilium tsingtauense”

Figure 6.4: Model Example: Observation for the plant “Lilium tsingtauense”

The second type of objects and observations that we need to support are the animals. Table 6.3

presents the Application Profile for the objects of this type and Table 6.4 presents the Application

Profile for the observations. Finally, Figures 6.5 and 6.6 contain two example instances of an object

and an observation of the type ‘animal’.

68 Chapter 6. Model

Table 6.3: Example Application Profile for Animals. Each row represents an instance of the Object Attribute
Type and each column is an attribute of the class Attribute Type. For simplicity we did not include the order,
multivalued and required attributes

key label description type

label “Title” “The scientific name of the animal” text

description “Description” “A small description about the animal” text

url “External URL” “A URL where the user can get more infor-
mation about the object”

url

height “Mean height (m)” “The normal height of an adult animal” number

weight “Mean weight (kg)” “The normal weight of an adult animal” number

commonly_found_in “Commonly found
country”

“A country where the animal is most com-
monly found”

list

lifespan “Lifespan (years)” “The average life of the animal” number

Table 6.4: Example Application Profile for Observations about Animals. Each row represents an instance
of the Observation Attribute Type and each column is an attribute of the class Attribute Type. For simplicity
we did not include the order, multivalued and required attributes

key label description type

label “Title” “A small descriptive title for the observation” text

description “Description” “A small description about the observation” text

height “Height (meters)” “The height of the animal in meters” number

weight “Weight (kg)” “The weight of the animal in kg” number

gender “Gender” “The gender of the animal” list

color “Color” “The color of the fur of the animal” text

Figure 6.5: Model Example: Object for animal “Platypus”

6.3. Model Examples 69

Figure 6.6: Model Example: Observation for the animal “Platypus”

Summary

In this chapter we presented the model that we have developed for the support of the observation

in our system. We presented the Meta-Model that has been designed to provide extensibility to the

Model, and the Model that enables the creation of Observations that comply to our Meta-Model and

the Application Profiles that derive from it. Finally, we described two example implementations for

the Model and the Meta-Model for a system that supports observations of plants.

Chapter 7

Architecture

This chapter describes the overall system architecture, identifies its basic components and provides

an in depth analysis of the internal functionality. Moreover, it advocates the architectural decisions

that ware made for the most important components.

Built as a web application, the system adopts the Rich Internet Application (RIA) principles,

which promote the development of web applications as desktop applications performing business

logic operations on the server side, as well as on the client side. The Client Side logic operates

within the web browser running on a user’s local computer, while the Server Side logic operates on

the web server hosting the application. Figure 7.1 displays the overall system architecture.

For the development of the application we adopted several design patterns [37]. The use of

well-established and documented design patterns, speeds up the development process, since they

provide reusable solutions to the most common software design problems [15, 36]. The design

patterns that we have used in designing the system’s architecture are presented in detail in the

following sections. The Model View Controller (MVC) design pattern [62, 63] and the Observer

pattern were used on the client side, and a multi-tier architecture was implemented on the server

side.

The analysis of the architecture has been broken into two parts; Section 7.1 presents the Client

Side Architecture, while Section 7.2 presents the Server Side Architecture.

7.1 Client Side Architecture

The Client Side of the application is responsible for the interaction with the user. All the actions

performed by an individual using the system, are handled by the client side logic, which undertakes

the presentation of the information as well as the communication with the server. In order to achieve

72 Chapter 7. Architecture

Figure 7.1: Overall System Architecture, containing client-side (top) and server-side (bottom) along with
the included modules.

7.1. Client Side Architecture 73

a high level of decoupling between the components forming the client logic we adopted the Model

View Controller (MVC) design pattern [62, 63], as well as the Observer pattern.

The usage of the MVC pattern introduces the separation of the responsibilities for the visual

display and the event handling behavior into different entities, named respectively, the View and

the Controller. Some of the advantages of this approach are: (a) Maximization of the code that

can be tested with automation (Web pages containing HTML elements are hard to test); (b) Code

sharing between pages that require the same behavior; and (c) Separation of Business logic from

User Interface logic to make the code easier to understand and maintain. The MVC pattern that we

have implemented is presented in more details in Section 8.1.1.

As can be seen in Figure 7.1, the client side is composed of a number of distinct modules. These

are described here in more detail:

7.1.1 Model

The Model encompasses all the business objects used by the system. When the system needs to

present information about a business object, the client side requests the respective information. In

turn, the server side services transfer the Model to the client side. When an update on the Model

needs to be persistent, the client side sends the updated Model to the server side, initiating the

corresponding procedures.

7.1.2 View

In the MVC pattern, the view is responsible for all the information presentation. Each view controls

a number of widgets on the user’s web browser. It contains the Action Handlers which listen to the

user’s actions, and the Templates that define the presentation of the widgets. More details on the

implementation of the View can be found in Section 8.1.5.

7.1.3 Controller

The Controllers contain most of the client side logic of our application. They are the modules that

respond to the user input and define the Views that comprise the visual effect on the user interface.

Additionally, they maintain the Model and change it appropriately. For every distinct visual inter-

face of the system there is a Controller, who in most cases handles a single view. Moreover there

are several cases where a “composite” Controller manages a number of other Controllers, creating

complex interfaces. The Controllers also access the browsers features that provide access to the

Storage space, the FIle Uploads, the GPS location, etc.

74 Chapter 7. Architecture

7.1.4 Event Bus

The Event Bus implements the Publish-Subscribe (Observer) pattern, enabling the decoupling of

the user interface components. It is responsible for the message transmission between the entities

that reside on the Client Side. It provides mechanisms for publishing events and subscribing to

events.

7.1.5 Application Manager

The Application Manager acts as a centralized point of control, handling the communication be-

tween the Controllers and the server side by making calls to the services exposed in the Service

Layer, and notifying Presenters for their responses. It contains the Data Wrapper, which imple-

ments the Mediator pattern, handling all the communication between the Controllers and the Server

Side. Moreover, it enables the seamless caching of the data on the client side with the use of a ded-

icated cache. On each data request, the Data Wrapper checks if it already exists in the cache before

requesting it from the server, thus reducing the number of requests and speeding up the application

execution. Apart from the Cache, the Data Wrapper contains the Data Adapters. More details on

the implementation of the Data Adapters can be found in Section 8.1.7.

7.1.6 Router

The Router manages the URL of the client browsers. Its main purpose is to provide a different

URL to each distinct interface, without raising a browser event that will force a reload on the whole

page. Additionally, when the URL changes from other controls on the page (e.g. a click on a link),

the Router analyses the new location and handles the transition to the new View. This contains a

mapping between the different URLs supported in the system, as well as the Controller responsible

for each mapped user interface. More details on the implementation of the Router can be found in

Section 8.1.3.

7.2 Server Side Architecture

The Server Side part of our framework follows a multi-layered architectural pattern consisting of

three basic layers: Service Layer, Business Logic Layer and Data Layer. This increases the system’s

maintainability, reusability of the components, scalability, robustness, and security. As shown in

Figure 7.1, the server side is comprised of a number of distinct modules which will be described in

the following sections.

7.2. Server Side Architecture 75

7.2.1 Service Layer

The Service Layer controls the communication between the client logic and the server logic, by

exposing a set of services (operations) to the client side components [14]. These services comprise

the middleware concealing the application business logic from the client and have been build as

RESTful [60, 35]. The basic system services are:

• CRUD Services: Facilitate the creation, retrieval, update and deletion of an observation, a

multimedia object associated with an observation, a user etc.

• External Access Services: Provide the means for external systems to search and use the data

of the system.

• Search Services: Provide the Client Side with the ability to search the data.

• Multimedia Access Services: Allow access to the uploaded multimedia files and their respec-

tive thumbnails.

• Statistics Services: Responsible for supplying the usage statistics of the observations and the

objects.

7.2.2 Business Logic Layer

The Business Logic Layer, also known as Domain Layer, contains the business logic of the appli-

cation and separates it from the Data Layer and the Service Layer.

• The Persistency Management Module, which manages the access to the data on the repository.

• The Statistics Management Module, which manages the statistics of the system.

• The Search Management Module, which responds to the queries on the data with the appro-

priate results.

• The Multimedia Management Module, which manages the persistence and the serving of the

multimedia files, as well as their analysis and thumbnail generation.

7.2.3 Data Layer

The Data Layer accommodates external systems that are used to store data accessed by it. Such

systems are the Cache Server which holds the cached information for faster access, the Data Repos-

itory which holds all the data of the system, the Search Index allowing faster full text queries, and

the File Repository, persisting the multimedia files and the thumbnails. The implementation details

of the components that comprise the Data Layer can be found in Section 8.2

76 Chapter 7. Architecture

Summary

In this chapter we presented the overall system architecture, identifying its basic components and

providing an in depth analysis of their internal functionality.

Chapter 8

Implementation

The functionality of the system and the architecture have been implemented successful as described

above. This chapter will describe the implementation details of some of the components in more

detail, while also providing examples of source code. This way the reader can realize how specific

parts of the system have been implemented. We have split the chapter into two Sections. Section 8.1

describes the Client Side, while Section 8.2 described the Server Side.

For the source control management of our application we have used multiple Git repositories

hosted on Bitbucket 1. Moreover, we have used Jenkins [66], which is a continuous integration

server, allowing us to run automatic tests and deploy the applications easier and in a more controlled

way.

8.1 Client Side

The client side is based on the latest web-application standards and relies on the JavaScript pro-

gramming language. The client side refers to both the desktop web application and the mobile web

application. Although these have different interfaces that are presented to the users, the underlying

source code for the client side is almost identical, with the only exception for the user interface

templates (see Section 8.1.2).

Additionally to these two systems, the mobile web application has also been packaged as a

native mobile application with the use of Phonegap, making it compatible with all the major mobile

platforms. This allows the application to run without the need of internet access, or the loading

of its source each time that the user loads it. Additionally, Phonegap allows us to provide more

functionality by using various native platform features that are otherwise unavailable to web appli-

1http://bitbucket.org/

http://bitbucket.org/

78 Chapter 8. Implementation

cations.

The client side is built with JavaScript, HTML5 and CSS3. For the code organization of the

client side we have used various open source libraries/frameworks. Section 8.1.1 presents the im-

plementation of the MVC pattern in our applications. Section 8.1.2 contains some details about the

way that the user interfaces have been implemented. Section 8.1.3 describes the parts that handle the

user interface screen transitions, while Section 8.1.4 present the modular organizing of the source

code. Section 8.1.5 introduces the implementational aspects of the Views in our applications, and

Section 8.1.7 describes the Data Adapters. Finally, Section 8.1.8 describes the development process

that we followed.

8.1.1 MVC Pattern

The client side of the application has been based heavily on the Model View Controller design

pattern. Numerous JavaScript frameworks implementing the MVC pattern have emerged during

the last years. Most of them force strict definition format rules to the various components due to the

special handling that complex JavaScript libraries need. After having evaluated the most popular

open-source frameworks, we decided to use Backbone.js [1].

Figure 8.1: Model View Controller Pattern in our application.

8.1. Client Side 79

Backbone.js [1, 53, 57] has been developed as an MVC framework for JavaScript applications.

It’s main purpose it to provide the basic structure to the application. It is very lightweight and

extremely extensible, allowing developers to customize it according to their needs with minimum

effort. Apart from the MVC features, it provides other useful functionality: models with key-

value binding and custom events, collections with a rich API of enumerable functions, views with

declarative event handling, and connects it all to your existing API over a RESTful JSON interface.

The use of Backbone’s models, collections, events and views provides the application with a

very basic “solid” structure. The models and the collections allow the application objects to act

as object oriented classes with key-value binding and custom listeners on each of the properties.

Moreover, the events allow custom events to be broadcasted from any part of the application, re-

ducing the coupling of the components. Finally, the views allow the creation of independent widget

and their composition into complex user interfaces.

Figure 8.1 presents the MVC components and the interaction between them in our applica-

tion. The Controller instantiates the View and manipulates the Model. In turn, the View listens for

updates of the Model, and when these happen the View is re-rendered with the changes. Addition-

ally, the View updated the Document Object Model (DOM) [42] when needed, as well as handles

the interaction events that the user actions generate on the browser. In some cases the View also

manipulates the Model.

8.1.2 User Interface

This section will describe come of the implementation details of the User Interfaces in our applica-

tion.

When building an application optimized for mobile devices, the developer must take into ac-

count the small size of the screen which affects the usability of the applications. The menus that are

provided with the mobile applications are at most times hidden and become visible only when the

user needs them. This happens with the use of a button that reveals the menu. When building na-

tive applications for the mobile platforms, the Software Development Kits provide the functionality

needed for creating such menus.

However, when building web applications for mobile devices, the developer needs to implement

the functionality for the sliding menu by himself. There are a number of ready-to-use implemen-

tations available open-source, but they all have their disadvantages when it comes to performance,

since they try to apply themselves to the general cases, providing more functionality than needed

most of the times. To this end we developed a custom sliding menu, as minimal as possible with

performance in mind.

80 Chapter 8. Implementation

(a) The viewport when the menu is hidden (b) The viewport when the menu is visible

Figure 8.2: The main User Interface elements of our mobile application.

Our implementation uses the latest features of HTML5 and CSS3 for placing the elements and

the visual effects. Figure 8.2 presents the main elements of our user interfaces. These are the two

menus (right and left) and the main content area in the middle. When the menus are hidden, they

are pushed away from the visible area (Viewport) of the document. When the menus are becoming

visible, the whole canvas is moved to the left or the the right (depending on which menu is open),

which causes one of the two menus to appear.

Templates

A very important aspect in providing extensible applications that handle information presentation

is the use of templates. By using templates, we can isolate the code that generates the interfaces

and update it without having to update the application logic [59, 68]. A lot of JavaSctipt templating

libraries have been developed during the last few years. We chose Handlebars for our templates,

due to it’s powerful features and the simpliciy of the markup that it supports.

Handlebars allows the developer to write the HTML code for the user interface, while inserting

special sequences in the places that he want dynamic content generation. During the compilation

of the template to actual ‘valid’ HTML, the system provides the templates with the needed model,

which are in turn used for the dynamic content.

An example of a template can be seen in Listing 8.1. We can immediately notice the if statement

between lines 2 and 6. Moreover, line 11 prints the fullName attribute. Apart from the template,

the rendering requires an object in order to find the required attributes and print them. An example

of an object that would work with this template can be seen in Listing 8.2.

8.1. Client Side 81

Listing 8.1: Handlebars template

1 <div class="clearfix">

2 {{#if hasThumbnail }}

3 <div class="observation -image">

4

5 </div>

6 {{/if}}

7 <div class="pull -left">

8 <div class="observation -label">{{label}}</div>

9 {{# with user}}

10 <div class="object -label">

11 by {{ fullName }}

12 </div>

13 {{/ with}}

14 <div class="observation -label">

15 {{ creationTime }}

16 </div>

17 </div>

18 <div class="observation -gotobtn">

19 <i class="fa fa-arrow -circle -o-right"></i>

20 </div>

21 </div>

Listing 8.2: Handlebars template model example

1 {

2 label: 'Observation of canis lupus ',

3 creationTime: 1984662854,

4 thumbnailUrl: 'http://... ',

5 user: {

6 fullName: 'Giannis Skevakis '

7 }

8 }

The use of templates during the development of the mobile application allowed us to rapidly

move to the desktop interfaces. In most parts of the applications we just needed to update the

templates with the new markup to support desktop browsers.

Style

Another aspect of the web application development that has been really hard to achieve extensibility

is the styling of the web pages. The part of the web applications that is responsible for the styling

82 Chapter 8. Implementation

is the CSS, which can handle all the graphical details and the presentation of the elements that

create a web page. CSS has been build with simplicity instead flexibility in mind. To overcome

this issue, a lot of libraries have been developed, acting as pre-processors of CSS. These provide

special markup language for the development, which is then compiled into valid CSS.

The library that we used for creating extensible styles in our application was LessCSS. LessCSS

adds features that allow variables, mixins, functions and many other techniques, making CSS more

maintainable, themable and extendable. An example of LessCSS code can be seen in Listing 8.3.

We can see in line 1 that we can include a file inside another. Lines 3-7 contain variable definitions,

and lines 10-17 contain the usual CSS rules, although the previously set variables are marked with

the symbol ‘@’. The resulting CSS after the compilation of this can be seen in Listing 8.4.

Listing 8.3: LessCSS example

1 @import "mixins.less";

2

3 @body -bg: #fff;

4 @text -color: lighten (#000, 20%); // #333

5 @font -family -base: "Open Sans", Helvetica , Arial , sans -serif;

6 @font -size -base: 14px;

7 @line -height -base: 1.428571429;

8

9 body {

10 font -family: @font -family -base;

11 font -size: @font -size -base;

12 line -height: @line -height -base;

13 color: @text -color;

14 background -color: @body -bg;

15 height:100%;

16 }

Listing 8.4: Generated CSS

1 body {

2 font -family: "Open Sans", Helvetica , Arial , sans -serif;

3 font -size: 14px;

4 line -height: 1.428571429;

5 color: #333;

6 background -color: #fff;

7 height:100%;

8 }

With the use of LessCSS, we were able to define all the variables used in our CSS inside a

8.1. Client Side 83

single file. This allows any change in the color, text size, font, etc. to be performed directly from

the specific file.

8.1.3 Routing

Modern web applications build with the latest technologies enable more powerful interaction with

the users. Their features are very close to the desktop applications in terms of complexity and

management. These applications are called RIAs (Rich Internet Applications).

A very important aspect in the development of RIAs, is the use of AJAX for the communication

between the client and the server. This enables the generation and presentation of content without

forcing the web browser to reload a new web page. JavaScript source code running on the user’s

browser is responsible for issuing AJAX calls to the server as well as manipulating the Document

Object Model and presenting the data.

As JavaScript applications are becoming more complex, the are used to manipulate all of the

interfaces presented to the user. However, two major problems have surfaced from this complexity.

Firstly, the change of the interface using JavaScript needs special treatment in order to allow the

browser’s history support. This appeared because the web browsers pushed to the history whenever

there was a change in the URL and a reload of the new one. In RIAs this is not always the case. The

second problem is the ability of the users to create bookmarks for a specific user interface screen,

which is not possible if the application does not propagate the interface change to the browser’s

URL.

In our system, these issues are handled by the Router component, which takes care of both the

history of the browser and the mapping between the different screens of our application and their

URLs. Our Router is based on the Router object provided by the Backbone.js library.

Figure 8.3 presents the interaction of the components in our application that take part in the

routing. On the top we have the user’s browser which includes the User Interface of the application

managed by the DOM, as well as the URL. When the URL changes, an event is raised which is

handled by the URL Change Handler of the Router. In turn, the Router contains a map which

holds the correlation between the URLs and the Views. The change handlers find the respective

View for each URL using the map, and initialize it. It is then passed to the Application View

which is responsible for presenting it to user. The Application View is a special type of View

which handles the main HTML content of the application by manipulating the DOM. The content

of the Application View is composed of the menus and whichever view is at any time presented

to the user. On each change of View, the Application View is responsible for safely discarding the

previous View and attaching the new one to the DOM.

84 Chapter 8. Implementation

Figure 8.3: Routing of our application.

8.1.4 Modular Development

Modular programming is used to break large applications into smaller blocks of manageable code.

Module-based coding eases the effort for maintenance and increases reusability. However, manag-

ing dependencies between modules is a major concern developers face throughout the application

development process.

Large web applications often require a number of JavaScript files. Generally, they are loaded

one by one using <script> tags. Additionally, each file can potentially be dependent on other files,

which need to be included in the HTML code before that. The most common example would be

jQuery [6] plugins, which are all dependent upon the core jQuery library. Therefore, jQuery must

be loaded before any of its plugins.

To accomplish the modular design in our applications and allow the organizing of our code in

smaller files as well as the management of the dependencies for each JavaScript file, we used the

RequireJS 2 library. RequireJS is one of the most popular JavaScript module and file loader which

is supported in the latest versions of popular browsers. It is optimized for in-browser use, but it can

be used in other JavaScript environments, like Rhino and Node.js.

In RequireJS we separate code into modules which each handle a single responsibility. Addi-

tionally, dependencies need to be configured when loading files. Using a modular script loader like

RequireJS greatly improves the speed and quality of the code.

2http://requirejs.org/

http://requirejs.org/

8.1. Client Side 85

The management of these dependencies between the modules is handled by RequireJS. The

modules are defined in separate files along with their dependencies, and RequireJS takes on the

responsibility to provide each module with the required dependencies at runtime. Modular loading

also allows incremental “lazy” loading of the different parts of the application at the time that

they are needed, instead of loading all the Javascript code at loading time. This can have a big

impact on application loading and running, especially in recent web applications that rely heavily

on Javascript. Another very important advantage of using RequireJS or any other module loader, is

the isolation of the modular code inside functions. Due to the nature of JavaScript, objects are most

of the times global, which can cause a lot of problems when different parts of the application use

the same variable names. The way that RequireJS works is that it wraps the code inside a function,

which isolates the objects inside a JavaScript closure (i.e. special context inaccessible by other

parts of the code).

An example of a fully functional module in our application can be seen in Listing 8.5. In line

1 we define the dependencies used by our module. In line 2 we create a function that wraps the

module’s code and takes as input the objects that match the dependencies. RequireJS loads the

dependencies defined and makes a function call to our module, providing the respective objects.

The rest of the code is plain JavaScript code.

Listing 8.5: RequireJS example

1 define (['backbone ', 'app', 'fastclick ', 'leaflet ',

'templates/handlebars.helpers '],

2 function(Backbone , App , FastClick , L, handlebarsHelpers) {

3

4 $(function () {

5 // initialize fastclick

6 FastClick.attach(document.body);

7

8 // initialize leaflet image path

9 L.Icon.Default.imagePath = "img/leaflet";

10

11 // create the app

12 window.app = App;

13 App.initialize ();

14

15 $('#loading -css').remove ();

16 });

17 }

18);

86 Chapter 8. Implementation

8.1.5 View

The Views of our application have been based on the View objects provided by Backbone.js, with

some extensions.

Our extensions to the Views include the definition of two functions. The first one is onAttach(),

which holds operations that need to access the DOM of the browser. This was needed because the

render() function is called before the View is attached to the DOM, which caused undesired ef-

fects in the case where we needed to have listeners attached to the elements of our view. These

listeners will not work if the elements are not attached on initialization time. That is why the

normal usage of our Views includes the call of the render() function which creates the DOM el-

ement representing our View, followed by the attachment of this element to the DOM. Then, the

onAttach() method is safely called.

The second addition to the Backbone’s View is the close function, which is used just before the

View is detached from the DOM. This is a crucial part of the client side logic, since it makes sure

that the resources used by the View are cleared from memory and all the listeners are detached from

the elements. Without this step, the generations of JavaScript zombies (objects that are not cleared

by the garbage collector) is inevitable.

Listing 8.6 presents the sample code of a View in our application. On the top we see the depen-

dencies managed by RequireJS. In lines 6-76 there is the definition of the View. Lines 13,14 define

the model objects used by the View, and lines 16-19 holds the user interface events that the View

listens for. In line 21 we can see the initialize() function that acts as a constructor, retrieving the

required information from the data adapter and setting up the View Object. Following, in line 30

we can see the render() function which compiles the template (presented in Section 8.1.2) using

the model objects. Line 37 defines the onAttach() function, which is called after the View has

been attached to the DOM and is responsible for operations that require the DOM objects. Lines

54-60 present the two functions called when the user interface events occur, and finally, line 62

holds the close() function which is called just before the View is detached from the DOM, and is

responsible for freeing up the memory and detaching the events from the DOM objects.

Listing 8.6: View example

1 define (['jquery ', 'backbone ', 'sly', 'solid ', 'leaflet ',

2 'hbs!templates/observations/observation ', ...],

3 function($, Backbone , Sly , solid , L, template , ...) {

4 "use strict";

5

6 var ObservationView = Backbone.View.extend ({

7

8.1. Client Side 87

8 className: "view -container",

9

10 // the id of the observation. Must be provided with constructor.

11 observationId: null ,

12

13 multimedia: null ,

14 observation: null ,

15

16 events: {

17 "click #backBtn": "goBack",

18 "click #deleteBtn": "delete"

19 },

20

21 initialize: function () {

22 this.player = new MultimediaPlayer ();

23 this.isLoading = true;

24

25 this.observation =

app.getDataAdapter ().getObservation(this.observationId);

26

27 window.addEventListener("resize", this.resize.bind(this));

28 },

29

30 render: function () {

31 // Load the compiled HTML into the Backbone "el"

32 this.$el.html(template(this.observation));

33

34 return this;

35 },

36

37 onAttach: function () {

38 for (i = 0; i < this.profile.observationAttributes.length;

i++) {

39 var atr = this.profile.observationAttributes[i];

40 var value = this.observation.get(atr.key);

41 if(value) {

42 this.addContentBox(atr , value);

43 }

44 }

45 for (i = 0; i < this.contentBoxes.length; i++) {

46 if(typeof this.contentBoxes[i]. onAttach === 'function ') {

47 this.contentBoxes[i]. onAttach ();

88 Chapter 8. Implementation

48 }

49 }

50

51 this.initSlideshow ();

52 },

53

54 goBack: function () {

55 window.history.back();

56 },

57

58 delete: function(e) {

59 ...

60 },

61

62 close: function () {

63 for (var i = 0; i < this.contentBoxes.length; i++) {

64 this.contentBoxes[i].close();

65 }

66 this.contentBoxes.length = 0;

67

68 this.off();

69 this.remove ();

70 delete this.$el;

71 delete this.el;

72 }

73 });

74

75 return ObservationView;

76 }

77);

8.1.6 Maps

For the maps used in our user interfaces, we used an open-source JavaScript library called Leaflet.

Leaflet 3 is a minimal Javascript library, optimal for usage on mobile phones. The maps that are

used here are provided by OpenStreetMaps [25].

3http://leafletjs.com/

http://leafletjs.com/

8.1. Client Side 89

8.1.7 Data Adapters

The Data Adapters in our application are responsible for handling all the data communication be-

tween the client side and the server side. As can be seen in the system’s architecture (Figure 7.1),

there exist two different types of adapters: the memory adapter and the web adapter.

The Memory adapter holds the data when there is no Internet connection, which is applicable

only in the case of the native mobile application.

The Web adapter issues the AJAX calls to the server and gets the responses. An example to this

implementation can be seen in Listing 8.7. Due to the nature of JavaScript and the asynchronous

calls between the client side and the server, there is the need to adjust all the calls accordingly. To

achieve that we used the Deferred object [24] provided by jQuery (line 2). This allows us to return

a ‘promise’ to the function call, and call the resolve() function of this promise when the results

have been received from the server (line 13). The rest of the code in lines 4-11 is the normal usage

of the jQuery AJAX adapter.

Listing 8.7: Data adapter example

1 getObservations: function(type , count , page) {

2 var deferred = $.Deferred ();

3

4 $.ajax({

5 url: this.baseUrl + "/observation/type/" + type ,

6 type: 'get',

7 data:{

8 count: count ,

9 page: page

10 },

11 contentType: "application/json"

12 }).done(function(data) {

13 deferred.resolve(data);

14 });

15

16 return deferred.promise ();

17 },

8.1.8 Development Process

For the development of the client side of our application we have followed a modern approach,

using a lot of the powerful tools that are available to the developers. Two of these tools worth

90 Chapter 8. Implementation

mentioning are Node.js 4 and Grunt 5.

Node.js [51, 69] is a platform built on Chrome’s JavaScript runtime for easily building fast,

scalable network applications. Node.js uses an event-driven, non-blocking I/O model that makes it

lightweight and efficient, perfect for data-intensive real-time applications that run across distributed

devices.

Grunt is a task-based command-line tool that speeds up workflows by reducing the effort re-

quired to prepare assets for production. It does this by wrapping up jobs into tasks that are compiled

automatically. Basically, one can use Grunt on most tasks that are considered trivial during the de-

velopment process, which would otherwise have to manually configure and run. Grunt is build on

top of Node.js. The list of tasks that Grunt can handle is exhaustive.

In our process, we have used Grunt to automate the needed tasks during the development and

deployment stages. These involve the compilation and compression (minification) of the source

code, the unit testing and the static source code checking. It is also used for the compilation of the

application to the various formats supported by Phonegap/Cordova.

The organization of our source code can be seen in Listing 8.8.

Listing 8.8: Folder organization

app // The main folder for our code and templates

--adapters // The adapters (cordova , inmemory , localstorage)

--collections // The collections of our models

--lib // The external libraries used

--models // The models of our application

--templates // The templates used by our views

--vies // The views

assets // The static assets used in our application

--css // The css files

--fonts // The fonts

--img // The images used

dist // The distribution folder , populated with the files

after the compilation of the sources and the minification

less // The LessCSS files , which are compiled to CSS.

4http://nodejs.org/
5http://gruntjs.com/

8.2. Server Side 91

8.2 Server Side

The server side (backend) of the system has been based on the Java programming language. More

specifically, we used the Spring Framework extensively. The main features of Spring that we used

were: the Inversion of Control container, the Spring Data framework, Spring Web and Spring

Security. Section 8.2.1

8.2.1 Persistency

For the persistence of the data we have chosen a document database, MongoDB [7, 23]. MongoDB

is a non-relational (NoSQL) database which allows us to represent the data of the system as JSON

documents, while providing rich query expressiveness and selectivity. More information about

MongoDB are presented in Section 3.2.

In recent years, non-relational databases are becoming more and more popular and have been

replacing relational databases in a lot of cases, especially in big data and cloud based systems

[22, 28, 61]. The technology behind most NoSQL databases is based on distributed and parallel

systems [30, 47], as well as in-memory databases [31]. There has been a lot of evaluation and

criticism on NoSQL databases [46, 40], and a lot of debate about the selection of the best database

technology between the two [67, 58]. Comparing relational (SQL) databases to NoSQL, we can

note the following:

• Schema: Regular SQL platforms often have strictly enforced rules for a schema change,

while most NoSQL platforms are schema-less, thus allowing any schema updates without

any effort.

• Queries: SQL supports a growing subset languages for queries, as well as a wide range of

filters, sorting options, and projections and index queries. NoSQL does all this as well, but

SQL can often go beyond it, allowing powerful aggregations of your data as well, beyond

what NoSQL can do.

• Consistency: SQL platforms often use a single master to guarantee strong consistency in

the database. These use synchronous replication to ensure that important changes queued

up to the master are not lost. NoSQL, by contrast, does replication of entity groups without

a master, so that data is strong within an entity group, and is eventually updated across all

groups. The better option depends on the constraints and needs of the database.

• Scalability: For years, database administrators relied on scaling up, buying bigger servers

as database load increased. However, as transaction rates and demands on the databases

92 Chapter 8. Implementation

continue to expand immensely, emphasis is on scaling out instead. Scaling out is distributing

databases across multiple hosts, and that is something NoSQL does better than standard SQL.

They’re designed for optimal use on scaled out databases.

• Management: NoSQL databases are generally designed to require less management overall.

Repairs are often automatic, and data distribution and simpler data models contribute to less

administration required overall.

• Transactions: Transactions are important because they ensure that the changes to the database

are atomic. SQL databases support transactions, which is one of their most important and

powerful feature. NoSQL platforms generally don’t support transactions, which means that

it is up to the developer to make sure that transactions are handled in the application instead

of using the database features.

Since NoSQL is a very broad term, there are a number of different technologies and systems

considered as NoSQL databases. As such, the NoSQL are further classified in the following cat-

egories: (a) Document store, (b) Graph stores, (c) Key-value stores, (d) Object databases and

(e) Column stores. A lot of debate between them has also taken place [13]. MongoDB is the one

that suited our needs more, and that is why we choose to use it for persisting our data. In more

detail, here are a few reasons that lead us to choose MongoDB:

• Schema-less: Most of our data does not conform to a rigid relational schema. Hence, we

can’t bound it in the structure of a relational database and we need some more flexibility. A

comparison between the relational schema we would need to implement if we used an SQL

database and the actual format of our data is presented in Figure 8.5.

• Querying: Our flexible schema will need to support a lot of elasticity in the querying of the

data. Using SQL, which is a strictly typed language, we would have to implement big and

complex queries, and most of the times even whole procedures with multiple queries until we

search for the results and create the objects. On the contrary, the query language supported

by MongoDB is extremely flexible.

• Transactions: Although MongoDB does not support multi-document transactions, the schema-

less design enables us to create multi-level ‘nested’ documents, taking advantage of the single

document transactions and the atomic operations. MongoDB also supports two-phase com-

mit

• MapReduce: MongoDB supports MapReduce operations on the data, giving a lot of power

to the developer to implement data processing jobs.

8.2. Server Side 93

(a) SQL implementation.

(b) MongoDB implementation.

Figure 8.4: Comparison between SQL and MongoDB schemas. If we were to extend the model and add an
additional property to the observation, in the case of the relational schema we would need to add rows to at
least two tables, whereas in the MongoDB implementation we just need to add the key-value pair.

• Geospatial: A particularly powerful feature of MongoDB is its support for geospatial in-

dexes. This allows the storage of x and y coordinates within documents and operations like

near a set of coordinates or within a box or circle.

Examples of the data as persisted in the database are presented in Appendix A. We have divided

the model to a number of entities, with each entity represented by a collection in MongoDB. The

most important of these entities are: Observation, Object, Multimedia, User, Profile, Statistics.

Apart from JSON documents, MongoDB can also persist blobs (files), which allowed us to put the

multimedia files and the thumbnails along with model collections.

8.2.2 Indexing

For indexing and searching purposes, the data is also pushed into an Elasticsearch [3] instance.

Elasticsearch is based on Lucene, providing a distributed, multitenant-capable full-text search en-

gine with a RESTful web interface and schema-free JSON documents. Every part of the data that

94 Chapter 8. Implementation

(a) SQL sample query.

(b) MongoDB sample query.

Figure 8.5: Comparison between SQL and MongoDB queries. We can notice that the query language of
MongoBD is much more flexible, which make it ideal for supporting queries on our data.

is searchable is indexed in an Elasticsearch cluster.

Our index server can be distributed in many machines due to the flexibility that Elasticsearch

provides. Our source code takes as a configuration the URL of the server and the port that it is

running, so there is no need to be hosted on the same server as our application.

8.2.3 Caching

Another very important part of the server side architecture is the caching system. To this end we

have used the Redis server [8], which is an open-source, networked, in-memory, key-value data

store. A very important feature that is provides is the optional durability to any data that it holds.

This allows us to define the maximum size of main memory that we want to allocate to the cache,

while Redis handles the removal of the least used elements when the limits are reached. The usage

of the server cache increases the response time of the application when the clients request objects

that are in the cache.

Redis has gained a lot of followers in recent years, and it is being used along with Database

Management Systems to cache data and provide faster access times [72].

8.2.4 Security

Security is a very important aspect in every system, especially the web-based applications. More

importantly, applications based on AJAX and Web 2.0 technologies pose a lot of possible security

8.2. Server Side 95

vulnerabilities due to the nature of the protocols that they use for transferring data [64].

For securing our infrastructure, we have used the security capabilities provided by the Spring

Framework. These include the cookie based identification of the users of the system and the login

using the RESTful login service. The important services that require the users to be logged in in

order to use them check for the existence of the user data in the HTTP session, and deny access

otherwise. However, we have also implemented some services that do not require user identification

so that they can be used by external applications without problems or need for identification.

Summary

In this chapter we described the implementation details of the most important components. Addi-

tionally, we provided source code listings with examples of our implementation.

Chapter 9

Graphical User Interface

This chapter presents the methodology followed for designing the user interfaces of the applica-

tions, as well as the final product. We start by describing the initial phase of prototyping the

interfaces in Section 9.1. Section 9.2 presents the interfaces as seen by real users.

9.1 Design Process

At the initial stages of the design process, we drew some prototypes of the user interfaces and cre-

ated storyboards to visualize and organize our ideas. A storyboard is a representation of a particular

interaction sequence [55]. Storyboards enable the better visualization of the interaction and the nav-

igation between screens, while presenting most of the functionality of the system. Moreover, they

enable brainstorming and allow changes to occur on the fly if a problem is found.

In our user interface design process, the storyboards were used in multiple heuristic evaluations

with random users familiar with mobile devices. We were able to receive feedback from these

evaluations and refine our design, making it more user friendly and efficient.

Figure 9.1 shows one of the storyboards that were designed. Some more user interface pro-

totypes are presented in Figures 9.2,9.13,9.4,9.5. Notice that each prototype has a number and a

name. The name is used as a general indication of the role of the interface and the number is used

to indicate the transition between the different interfaces.

98 Chapter 9. Graphical User Interface

Figure 9.1: Storyboard sketch. The numbers on the user interface elements show the interaction and the
next interface that needs to be presented when they are clicked.

9.1. Design Process 99

(a) The home screen (b) The side menu

(c) The observation list screen (d) The object list screen

Figure 9.2: User Interface Prototypes.

100 Chapter 9. Graphical User Interface

(a) The user’s observations screen (b) The object details screen

(c) The object observations screen (d) The object multimedia screen

Figure 9.3: User Interface Prototypes (cont’d).

9.1. Design Process 101

(a) The new observation screen
(b) The new object screen

(c) The observation details screen (d) The new observation type select screen

Figure 9.4: User Interface Prototypes (cont’d).

102 Chapter 9. Graphical User Interface

(a) The user details screen (b) The search object screen

(c) The search object screen (cont’d) (d) The object type general screen

Figure 9.5: User Interface Prototypes (cont’d).

9.2. User interfaces 103

9.2 User interfaces

The following sections presents some of the graphical user interfaces of the system by describing

some of the tasks that the user can complete using the systems. First we will describe the mobile

interfaces in Section 9.2.1, and then the desktop interfaces in Section 9.2.2

9.2.1 Mobile

This section refers to the interfaces presented to the user both when using the mobile application

or opening the system’s url using a mobile browser. There are some minor differences between the

two versions in the user interfaces, which will be highlighted for the better understanding of the

reader.

Figure 9.6: Mobile Interface: Login screen

Login

When the user opens the application for the first time, the login window (Figure 9.6) is presented,

prompting him to enter his credentials before continuing to the home screen of the tool. The user

also has the option to create a new account.

104 Chapter 9. Graphical User Interface

Create account

When the user opens the application for the first time, the login window (Figure 9.7) is presented,

prompting him to enter his credentials before continuing to the home screen of the tool. The user

also has the option to create a new account.

Figure 9.7: Mobile Interface: Account creation screen

Home Page

After a successful login, the user is presented with the home page of the application (Figure 9.8).

The home screen contains a list of the latest observations made by the users, as well as a list of

the most popular observations in terms of views. On the top right corner of the screen, there is a

shortcut allowing the user to create a new observation right away.

On the top left, we find the menu button, which opens the sliding menu as shown in Figure 9.9.

On the top side of the menu we can see the user’s profile information along with the image he

has provided. Below we find the list of the Object Types supported by the Application Profiles of

the system, and even lower there are the links to the user’s profile update page and the list of his

observations.

9.2. User interfaces 105

Figure 9.8: Mobile Interface: Home screen

106 Chapter 9. Graphical User Interface

Figure 9.9: Mobile Interface: Menu

9.2. User interfaces 107

Browse and Review Objects

Figure 9.10: Mobile Interface: Object type

In order for the user to browse the objects of a specific type, or search for a specific one, he has

to choose the right type from the menu. Then he is presented with the main screen of the type as

shown in Figure 9.10, which contains the latest objects and observations for the type. He can then

choose to see all of the objects and he is transfered to the object list (Figure 9.11).

From this screen he can use the search functionality to search for a specific object, or scroll

through the list. The specific screen implements infinite scroll, meaning that when the user scrolls

near the end of the list, the system automatically fetches the next results and appends them to the

end. This way we do not need paging support and the user can browse through all the data just by

scrolling.

Having found the object that he wants to review, he can then select it and he is shown the details

of the specific object as shown in Figure 9.12. On the top of the screen we can see the multimedia

files that follow the object. Just below there is the details about the user that created the object

108 Chapter 9. Graphical User Interface

Figure 9.11: Mobile Interface: Object list

9.2. User interfaces 109

and the number of times that it has been viewed. Below we find the metadata of the object as

contributed by the creator. At the bottom of the page there exist two links. The first one redirects

to the list of the observations about this object(Figure 9.13a), and the other one redirects to the list

of the multimedia files that have been created along with the observations (Figure 9.13b).

Figure 9.12: Mobile Interface: Object review

Browse and Review Observations

In order for the user to browse the observations of a specific type, or search for a specific one,

he has to choose the right type from the menu. Then he is presented with the main screen of the

type as already presented in Figure 9.10, which contains the latest objects and observations for the

type. He can then choose to see all of the observations and he is transfered to the observation list

(Figure 9.14).

From this screen he can use the search functionality to search for a specific observation, or

scroll through the list. This screen implements infinite scroll as well, as described above.

Having found the observation that he wants to review, he can then select it and he is shown

the details of the specific observation as shown in Figure 9.15. On the top of the screen we can

110 Chapter 9. Graphical User Interface

(a) Observations concerning a specific object (b) Multimedia concerning a specific object

Figure 9.13: Mobile Interface: Observations and Multimedia about object

see the multimedia files that have been created with the observation. Just below there is the details

about the user that created the observation and the number of times that it has been viewed. Below

we find the metadata of the observation as contributed by the creator. We can notice the different

metadata fields that have been filled, as well as the map showing the geographic location that the

observation was made.

Create new Object

In order for the user to create a new object, he needs to start by choosing an object type from the

menu. Then, from the main screen of the type, he can click on the ‘+’ sign on the top bar, which

presents him with the new observation interface, as shown in Figure 9.16a

Create new Observation

In order for the user to create a new observation, he needs to start by choosing an object type from

the menu. Then, from the main screen of the type, he can click on the ‘+’ sign on the top bar, which

presents him with the new observation interface, as shown in Figure 9.16b

Each object and observation can contain one or more multimedia objects. When the user clicks

on the plus button, he is presented with a multimedia upload screen, depending on the device and

which of our applications he is using. That is, if he is using the native mobile application, he is

9.2. User interfaces 111

Figure 9.14: Mobile Interface: Observation list

112 Chapter 9. Graphical User Interface

Figure 9.15: Mobile Interface: Observation review

9.2. User interfaces 113

(a) Create Object
(b) Create Observation

Figure 9.16: Mobile Interface: Create Object and Observation.

presented with the screen in Figure 9.17a. In the case that he is using the mobile web application,

he is presented with the screen in Figure 9.17b.

Browse Own Observations

If the user wants to review the observations that he has submitted to the system, he needs to follow

the ‘My Observations’ link of the menu. He is then presented with the list of his observations

(Figure 9.18), and he can choose to review any of them.

Update Profile

In the case that the user wants to edit his profile or upload a new profile picture, he needs to

follow the ‘Profile’ link of the menu. He is then presented with the pre-filled form of his profile

(Figure 9.19) and he can edit any information that he wants.

Review User’s Profile

If the user wants to see the profile of another user of the system, he needs to follow the links that

exist in the object and observation details pages. He is then presented with the user profile interface

114 Chapter 9. Graphical User Interface

(a) Capture Multimedia (b) Upload Multimedia

Figure 9.17: Mobile Interface: Upload/Capture multimedia for Object / Observation.

9.2. User interfaces 115

Figure 9.18: Mobile Interface: User’s observations

116 Chapter 9. Graphical User Interface

Figure 9.19: Mobile Interface: User’s profile edit

9.2. User interfaces 117

(Figure 9.20), where he can see some details about the specific user.

Figure 9.20: Mobile Interface: User details

118 Chapter 9. Graphical User Interface

9.2.2 Desktop

This section refers to the interfaces presented to the user when using the web interface.

Browse and Review Objects

Figure 9.21: Desktop Interface: Object list

In order for the user to browse the objects of a specific type, or search for a specific one, he has

to choose the right type from the menu on the left of the interface. Then he is presented with the

object list for the type, as shown in Figure 9.21.

From this screen he can use the search functionality to search for a specific object, or browse

through the list. The interface contains a search bar, as well as supports paging functionality,

reducing the amount of objects that need to be retrieved for each request.

Having found the object that he wants to review, he can then select it and he is shown the

details of the specific object as shown in Figure 9.22. On the main part of the screen we can see

the metadata and the multimedia files that follow the object. On the right side, there are the details

about the user that created the object and the number of times that it has been viewed. Below we

find the number of observations and objects that have been contributed about this object, which

redirect to the respective screens (Figure 9.23,Figure 9.24).

9.2. User interfaces 119

Figure 9.22: Desktop Interface: Object review

Figure 9.23: Desktop Interface: Observations concerning a specific object

120 Chapter 9. Graphical User Interface

Figure 9.24: Desktop Interface: Multimedia concerning a specific object

Browse and Review Observations

Figure 9.25: Desktop Interface: Observation list

9.2. User interfaces 121

In order for the user to browse the observations of a specific type, or search for a specific one,

he has to choose the right type from the menu on the left of the interface. Then he is presented with

the observation list for the type, as shown in Figure 9.25.

From this screen he can use the search functionality to search for a specific observation, or

browse through the list. This screen implements paging as well, as described above.

Figure 9.26: Desktop Interface: Observation review

Having found the observation that he wants to review, he can then select it and he is shown

the details of the specific observation as shown in Figure 9.26. On the top of the screen we can

see the multimedia files that have been created with the observation. Just below there is the details

about the user that created the observation and the number of times that it has been viewed. Below

we find the metadata of the observation as contributed by the creator. We can notice the different

metadata fields that have been filled, as well as the map showing the geographic location that the

observation was made.

Review Mobile Site

The system provides users with the ability to see the mobile application from inside the desktop

application, as shown in Figure 9.27.

122 Chapter 9. Graphical User Interface

Figure 9.27: Desktop mobile review screen

Responsive Interface

The whole system and all the interfaces have been designed as responsive, meaning that the visual

effects change depending on the browser and the device that the system uses. This makes a huge

impact on the usability [56] of the system, especially when the user login in from a mobile browser.

An example to this can be seen in Figure 9.26, which contains a screenshot of the interface pre-

senting the metadata of an observation when viewed by a mobile browser. This is the same page

as in Figure 9.28, so we can immediately notice the changes that happen in the user interface, thus

making it responsive.

Summary

In this chapter we presented the methodology followed for designing the interfaces of our ap-

plications, as well as the user interfaces of the final products. We described the initial phase of

prototyping the interfaces and creating the storyboards, and presented the interfaces as seen by real

users of our systems.

9.2. User interfaces 123

Figure 9.28: Desktop responsive example

Chapter 10

Migration of the Natural Europe data

This chapter presents the process and the software that we have developed in order to achieve the

migration of the data collected from the Natural Europe project to our infrastructure. As has already

been stated, the Natural Europe project has influenced the development of our framework. The data

that it holds are in the context of biodiversity and contain metadata descriptions for both species

and observations. The software that handles the transition has been build with extensibility in mind,

so as to allow further handling and transition of data from other sources and other formats.

The steps that need to be taken for any migration of existing data are the following:

• Define the Application Profile based on the model of the existing data.

• Traverse the items of the source one by one.

• Translate each record to our framework’s model based on the new Application Profile and

possibly enrich some fields.

• Store the objects, observations and multimedia using the web services provided by our in-

frastructure.

10.1 Meta-Model definition

The definition of the Meta-Model based on the Natural Europe data is the first step in the transition

process. The metadata about the Natural Europe cultural heritage objects follow the Natural Europe

CHO Application Profile (NE CHO-AP) which has been described in brief at Section 4.1.1, so we

needed to create an Application Profile with most of the elements that appear in NE CHO-AP.

In order to define the Application Profile, we need to identify the types of objects that we need

to support. The fact that the NE CHO AP defines general use metadata that apply to the whole

126 Chapter 10. Migration of the Natural Europe data

biodiversity context and the lack of distinction between plants, animals, etc., forces us to define one

Application Profile for all the objects.

Table 10.1: Application Profile for the Objects based on the NE CHO AP. For simplicity we did not include
the order and multivalued attributes

key label description type required

label “Scientific Name” “The scientific name of the species” text true

url “Url” “A URL where the user can get more infor-
mation about the species”

url false

taxonomy “Taxonomic Classifi-
cation”

“The taxonomy of the species” text false

common_names “Common Names” “The common names of the species” text false

Table 10.2: Application Profile for the Observations based on the NE CHO AP. For simplicity we did not
include the order and multivalued attributes

key label description type required

label “Title” “The title of the observation” text true

description “Description” “A small description about the observa-
tion”

text false

creator “Creator” “The creator of the observation” text false

url “Context URL” “A URL where the user can get more infor-
mation about the observation”

url false

museum “Museum” “The name of the museum that created the
observation”

text true

license “License” “A URL defining the license of the obser-
vation”

url true

location “Location” “The gps coordinates of the observation” location true

10.2 Architecture

The architecture of the system that has been developed to support the transition of the data is

presented in Figure 10.1. It is comprised of four different modules that were developed with the

purpose of facilitating the migration of the data of Natural Europe. The process as well as the

components are described below in detail and can be extended to support transition of data in other

formats as well.

The Access module is responsible for accessing and retrieving the initial metadata records from

the Natural Europe Cultural Environment (see Section 4.1) installations. The NE Service Client

that it contains is able to communicate with the Access Services on the NECE nodes and retrieve

the metadata for all the cultural heritage objects. Each of the object that it is received is passed to

10.3. Results 127

Figure 10.1: Overview of the Natural Europe Data migration process.

the Filter module for further processing. Additionally, the multimedia files that follow the objects

are kept until they are later requested.

The Filter module is responsible for filtering all the records and choosing which of them will be

eventually ingested by our systems. It contains a Validator component and a set of rules that define

which records are suitable. The data that does not pass the validation phase is discarded, while the

rest of the data is passed through a Pre-Processor and further moved to the Translator module.

The Translator module handles the conversion of the data from the NE CHO AP format to

our model. This includes the separation of the metadata records to Objects and Observations,

a procedure that is undertaken by two distinct components. Furthermore, the module holds an

enrichment component which The final metadata are passed to the Ingestion module, along with

their multimedia.

The Ingestion module is the final step in the process of migrating the data, and is responsible

for persisting the data to our infrastructure. It connects to the External Access Services as well as

the Multimedia Services of our system and passed the data. These modules are connected with the

Persistency Manager which stores the final data to the database.

10.3 Results

We have used the previously defined methodology and system in all six instances of the NECE. The

data from these instances has created over 2000 new objects and 300 observations. The detailed

numbers of this migration can be seen in Table 10.3.

128 Chapter 10. Migration of the Natural Europe data

Table 10.3: The number of CHOs annotated by each NHM using MMAT.

Natural History Museums (NHMs) CHOs Objects Observations Multimedia

Natural History Museum of Crete (NHMC) 4,010 1,204 4,010 3,853

National Museum of Natural History of Lis-
bon (MNHNL)

2,686 1,315 2,684 1,813

Jura-Museum Eichstätt (JME) 1,658 426 1,658 1,352

Arctic Center (AC) 480 9 480 479

Hungarian Natural History Museum
(HNHM)

4,244 1,315 4,243 2,361

Estonian Museum of Natural History
(TNHM)

1,972 511 1,972 1,814

TOTAL 15,050 4,780 15,047 11,672

Summary

We have presented the process that we followed and the software that we have developed in order

to achieve the transition of the data collected from the Natural Europe project to our infrastructure.

The methodology can be extended so as to allow further handling and transition of data from other

sources and other formats.

Chapter 11

Conclusion & Future Work

We presented the design and implementation of a framework for the management of biodiversity

observations captured by users roaming in the nature. The main objective of this framework is

to alleviate the need for experts capturing biodiversity information, and propagate the collection

of information to simple users wandering in the nature. The collection of the observational data

is performed using mobile devices that most of the people have available with them, like mobile

phones and tablet devices. Additionally, we describes the model that we have defined, allowing

the personalization of the metadata that follow the observations. This provides our framework

with the freedom and extensibility needed so as to be implemented for various domains other than

biodiversity, e.g. biodiversity observations about species, observations about natural disasters like

earthquakes, observations about car accidents.

Our future work will include the following:

• Enable the use of social media for collaborative species identification and occurrence by

providing the appropriate methodologies and tools [29]

• Implement procedures that will help users identify the species better and faster. This can

use the metadata provided about the objects of the application to create questions to the user

in order to help him enrich his knowledge and reach the correct object that he is observing

faster.

• Capture the movement of the users when creating observations. This will allow the creation

of the paths that the user followed during his trip and the playback for later user.

• Enrich attribute types with more attributes, and create complex attributes that contain more

130 Chapter 11. Conclusion & Future Work

than one simple attributes. For example, create attributes that contain the height in multiple

metrics with the user defining the unit that he uses using a dropdown list that follows the

value.

• Include validation rules in the Application Profile, which check the validity of the metadata

provided.

• Connect the systems to Natural Europe and other systems, allowing the exchange of the

observational data.

• Create visualization interfaces with faceted search functionality, enabling users to filter the

information that they search for.

Bibliography

[1] Backbone.js. http://backbonejs.org/.

[2] BSON. http://bsonspec.org.

[3] Elasticsearch. http://www.elasticsearch.org/.

[4] Europeana Semantic Elements Specification V.3.4.1. http://pro.europeana.eu/

documents/900548/dc80802e-6efb-4127-a98e-c27c95396d57.

[5] Global Biodiversity Information Facility. http://www.gbif.org/.

[6] jQuery. http://jquery.com/.

[7] MongoDB. http://www.mongodb.org/.

[8] Redis. http://redis.io/.

[9] Spring. http://spring.io/.

[10] The Natural Europe Project. http://www.natural-europe.eu/.

[11] Xuggler. http://www.xuggle.com/xuggler/.

[12] ISO 14721:2003 Open Archival Information System (OAIS) Reference Model.

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?

csnumber=24683, 2003.

[13] V. Abramova and J. Bernardino. NoSQL Databases: MongoDB vs Cassandra. In Proceedings

of the International C* Conference on Computer Science and Software Engineering, C3S2E

’13, pages 14–22, New York, NY, USA, 2013. ACM.

[14] G. Alonso. Web Services: Concepts, Architectures and Applications. Springer, 2004.

http://backbonejs.org/
http://bsonspec.org
http://www.elasticsearch.org/
http://pro.europeana.eu/documents/900548/dc80802e-6efb-4127-a98e-c27c95396d57
http://pro.europeana.eu/documents/900548/dc80802e-6efb-4127-a98e-c27c95396d57
http://www.gbif.org/
http://jquery.com/
http://www.mongodb.org/
http://redis.io/
http://spring.io/
http://www.natural-europe.eu/
http://www.xuggle.com/xuggler/
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=24683
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=24683

132 Bibliography

[15] D. Alur, D. Malks, and J. Crupi. Core J2EE Patterns: Best Practices and Design Strategies

(2nd Edition). Prentice Hall, 2 edition, 2003.

[16] W. Berendsohn, M. Döring, M. Gebhardt, and A. Güntsch. BioCase - A Biological Collection

Access Service for Europe. Technical report, 2002.

[17] W. G. Berendsohn. ABCD Schema - Task Group on Access to Biological Collection Data.

Technical report, sep 2007.

[18] T. Berners-Lee and D. Connolly. RFC 1866 – Hypertext Markup Language – 2.0. http:

//www.faqs.org/rfcs/rfc1630.html, November 1995.

[19] R. Bonney, C. B. Cooper, J. Dickinson, S. Kelling, T. Phillips, K. V. Rosenberg, and J. Shirk.

Citizen science: a developing tool for expanding science knowledge and scientific literacy.

BioScience, 59(11):977–984, 2009.

[20] D. C. Brabham. Crowdsourcing as a Model for Problem Solving: An Introduction and Cases.

Convergence: The International Journal of Research into New Media Technologies, 14(1):75–

90, 2008.

[21] D. C. Brabham. Moving the crowd at iStockphoto: The composition of the crowd and moti-

vations for participation in a crowdsourcing application. First Monday, 13(6), 2008.

[22] F. Chang, J. Dean, S. Ghemawat, W. Hsieh, D. Wallach, M. Burrows, T. Chandra, A. Fikes,

and R. Gruber. Bigtable: A distributed storage system for structured data. Proceedings of the

7th USENIX Symposium on Operating Systems Design and Implementation (OSDI’06), 2006.

[23] K. Chodorow and M. Dirolf. MongoDB - The Definitive Guide: Powerful and Scalable Data

Storage. O’Reilly, 2010.

[24] J. Chone. Asynchronous JavaScript Programming. The Power Of $.Deferred for HTML5

Application - HTML5 Rocks. 2012.

[25] S. Coast. How OpenStreetMap Is Changing the World. In K. Tanaka, P. Fröhlich, and K.-S.

Kim, editors, W2GIS, volume 6574 of Lecture Notes in Computer Science, page 4. Springer,

2011.

[26] A. Cockburn. Writing Effective Use Cases. Addison-Wesley Professional, 2001.

[27] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on Large Clusters. 2004.

http://www.faqs.org/rfcs/rfc1630.html
http://www.faqs.org/rfcs/rfc1630.html

Bibliography 133

[28] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin, S. Sivasub-

ramanian, P. Vosshall, and W. Vogels. Dynamo: Amazon’s highly available key-value store.

SIGOPS Oper. Syst. Rev., 41(6):205–220, 2007.

[29] D.-P. Deng, T.-R. Chuang, K.-T. Shao, G.-S. Mai, T.-E. Lin, R. Lemmens, C.-H. Hsu, H.-H.

Lin, and M.-J. Kraak. Using Social Media for Collaborative Species Identification and Occur-

rence: Issues, Methods, and Tools. In Proceedings of the 1st ACM SIGSPATIAL International

Workshop on Crowdsourced and Volunteered Geographic Information, GEOCROWD ’12,

pages 22–29, New York, NY, USA, 2012. ACM.

[30] D. J. DeWitt and J. Gray. Parallel Database Systems: The Future of High Performance

Database Systems. Commun. ACM, 35(6):85–98, 1992.

[31] D. J. DeWitt, R. H. Katz, F. Olken, L. D. Shapiro, M. R. Stonebraker, and D. A. Wood.

Implementation Techniques for Main Memory Database Systems. In Proceedings of the 1984

ACM SIGMOD International Conference on Management of Data, SIGMOD ’84, pages 1–8,

New York, NY, USA, 1984. ACM.

[32] ECMA International. Standard ECMA-262 - ECMAScript Language Specification. 5.1 edi-

tion, June 2011.

[33] R. Fielding, J. Gettys, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee. RFC2616

- Hypertext Transfer Protocol – HTTP/1.1. http://www.w3.org/Protocols/rfc2616/rfc2616-

sec10.html, 1999. [Online; accessed 25-July-2012].

[34] R. T. Fielding. Architectural Styles and the Design of Network-based Software Architectures.

Phd thesis, University of California, 2000.

[35] R. T. Fielding and R. N. Taylor. Principled Design of the Modern Web Architecture. ACM

Transactions on Internet Technology (TOIT), 2(2):115–150, 2002.

[36] M. Fowler. Patterns of Enterprise Application Architecture. Addison-Wesley, Boston, erste

auflage edition, 2003.

[37] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns, Elements of Reusable

Object-Oriented Software. Addison-Wesley, 1995.

[38] J. J. Garrett. Ajax: A New Approach to Web Applications. 2005.

[39] O. Gierke. Spring Data JPA - Reference Documentation, 2012.

134 Bibliography

[40] R. Hecht and S. Jablonski. NoSQL Evaluation: A Use Case Oriented Survey. In Proceedings

of the 2011 International Conference on Cloud and Service Computing, CSC ’11, pages 336–

341, Washington, DC, USA, 2011. IEEE Computer Society.

[41] H. Heitkötter, T. A. Majchrzak, B. Ruland, and T. Weber. Evaluating Frameworks for Creating

Mobile Web Apps. In K.-H. Krempels and A. Stocker, editors, WEBIST, pages 209–221.

SciTePress, 2013.

[42] A. L. Hors, P. L. Hégaret, L. Wood, G. Nicol, J. Robie, M. Champion, and S. Byrve. Document

Object Model (DOM) Level 3 Core Specification. W3C Recommendation, April 2004.

[43] J. Howe. The Rise of Crowdsourcing. Wired Magazine, 14(6), 06 2006.

[44] J. Howe. Crowdsourcing: Why the Power of the Crowd is Driving the Future of Business.

Crown Business, New York, 2008.

[45] S. Kelling, J. Gerbracht, D. Fink, C. Lagoze, W.-K. Wong, J. Yu, T. Damoulas, and C. P.

Gomes. eBird: A Human/Computer Learning Network for Biodiversity Conservation and

Research. In M. P. J. Fromherz and H. Muñoz-Avila, editors, IAAI. AAAI, 2012.

[46] N. Leavitt. Will NoSQL Databases Live Up to Their Promise? Computer, 43(2):12–14, Feb.

2010.

[47] X. Li, B. Dong, L. Xiao, L. Ruan, and D. Liu. HCCache: A Hybrid Client-Side Cache Man-

agement Scheme for I/O-intensive Workloads in Network-Based File Systems. In Parallel

and Distributed Computing, Applications and Technologies (PDCAT), 2012 13th Interna-

tional Conference on, pages 467–473, Dec 2012.

[48] K. Makris, G. Skevakis, V. Kalokyri, P. Arapi, and S. Christodoulakis. Metadata Management

and Interoperability Support for Natural History Museums. In Proceedings of the 17th Inter-

national Conference on Theory and Practice of Digital Libraries, volume 8092 of TPDL ’13,

pages 120–131. Springer, 2013.

[49] K. Makris, G. Skevakis, V. Kalokyri, P. Arapi, S. Christodoulakis, J. Stoitsis, N. Manolis, and

S. L. Rojas. Federating Natural History Museums in Natural Europe. In Proceedings of the

7th Metadata and Semantics Research Conference, volume 390 of MTSR ’13, pages 361–372.

Springer, November 2013.

[50] K. Makris, G. Skevakis, V. Kalokyri, N. Gioldasis, F. G. Kazasis, and S. Christodoulakis.

Bringing Environmental Culture Content into the Europeana.eu Portal: The Natural Europe

Bibliography 135

Digital Libraries Federation Infrastructure. In Proceedings of the 5th Metadata and Semantics

Research Conference, volume 240 of MTSR ’11, pages 400–411. Springer, 2011.

[51] B. McLaughlin. What is Node.js? O’Reilly Radar, 2011.

[52] A. Miles and S. Bechhofer. SKOS Simple Knowledge Organization System Reference. http:

//www.w3.org/TR/skos-reference/, 2009.

[53] V. Mirgorod. Backbone.js Cookbook. Packt Publishing, Aug. 2013.

[54] M. D. Network. Introduction to Object-Oriented JavaScript.

[55] M. W. Newman and J. A. Landay. Sitemaps, Storyboards, and Specifications: A Sketch of

Web Site Design Practice. In Symposium on Designing Interactive Systems, pages 263–274,

2000.

[56] J. Nielsen. Usability Engineering. Morgan Kaufmann Publishers, San Francisco, Calif., 1994.

[57] A. Osmani. Developing Backbone.js Applications. O’Reilly Media, May 2013.

[58] Z. Parker, S. Poe, and S. V. Vrbsky. Comparing NoSQL MongoDB to an SQL DB. In

Proceedings of the 51st ACM Southeast Conference, ACMSE ’13, pages 5:1–5:6, New York,

NY, USA, 2013. ACM.

[59] T. J. Parr. Enforcing Strict Model-view Separation in Template Engines. In Proceedings of the

13th International Conference on World Wide Web, WWW ’04, pages 224–233, New York,

NY, USA, 2004. ACM.

[60] C. Pautasso, O. Zimmermann, and F. Leymann. RESTful Web Services vs. "Big" Web Ser-

vices: Making the Right Architectural Decision. In WWW ’08: Proceeding of the 17th inter-

national conference on World Wide Web, Proceedings of the 17th international conference on

World Wide Web, pages 805–814, New York, 2008. ACM.

[61] J. Pokorny. NoSQL Databases: A Step to Database Scalability in Web Environment. In

Proceedings of the 13th International Conference on Information Integration and Web-based

Applications and Services, iiWAS ’11, pages 278–283, New York, NY, USA, 2011. ACM.

[62] T. Reenskaug. Models - Views - Controllers. Technical report, Technical Note, Xerox Parc,

1979.

[63] T. Reenskaug. The Model-View-Controller (MVC) Its Past and Present, 2003.

http://www.w3.org/TR/skos-reference/
http://www.w3.org/TR/skos-reference/

136 Bibliography

[64] P. Ritchie. The Security Risks of AJAX/Web 2.0 Applications. Network Security, 2007(3):4–

8, March 2007.

[65] G. Skevakis, K. Makris, V. Kalokyri, P. Arapi, and S. Christodoulakis. Metadata management,

interoperability and Linked Data publishing support for Natural History Museums. Interna-

tional Journal on Digital Libraries, pages 1–14.

[66] J. F. Smart. Jenkins - The Definitive Guide: Continuos Integration for the Masses: also Covers

Hudson. O’Reilly, 2011.

[67] M. Stonebraker. SQL databases v. NoSQL databases. Commun. ACM, 53(4):10–11, 2010.

[68] M. Tatsubori and T. Suzumura. HTML Templates That Fly: A Template Engine Approach

to Automated Offloading from Server to Client. In Proceedings of the 18th International

Conference on World Wide Web, WWW ’09, pages 951–960, New York, NY, USA, 2009.

ACM.

[69] S. Tilkov and S. Vinoski. Node.js: Using JavaScript to Build High-Performance Network

Programs. IEEE Internet Computing, 14(6):80–83, 2010.

[70] C. Tsinaraki, G. Skevakis, I. Trochatou, and S. Christodoulakis. MoM-NOCS: Management

of Mobile Multimedia Nature Observations Using Crowd Sourcing. In Proceedings of In-

ternational Conference on Advances in Mobile Computing & Multimedia, MoMM ’13,

pages 395:395–395:404, New York, NY, USA, 2013. ACM.

[71] A. van Kesteren, J. Aubourg, J. Song, and H. R. M. Steen. XMLHttpRequest Level 1. World

Wide Web Consortium, Working Draft WD-XMLHttpRequest2-20080930, January 2014.

[72] W. Wei, T. Enmin, and F. bing. A Data Distribution Platform Based on Event-Driven Mecha-

nism. In Computational Intelligence and Security (CIS), 2011 Seventh International Confer-

ence on, pages 1395–1399, Dec 2011.

[73] A. Wiggins. eBirding: Technology Adoption and the Transformation of Leisure into Science.

In Proceedings of the 2011 iConference, iConference ’11, pages 798–799, New York, NY,

USA, 2011. ACM.

[74] C. Wood, B. Sullivan, M. Iliff, D. Fink, and S. Kelling. eBird: engaging birders in science

and conservation. PLoS Biol., 9(12):e1001220, Dec. 2011.

Appendix A

Model Implementation Samples

This appendix provides samples of the implementation of the model, as persisted in the database,

transfered through the services and used by the components. The database contains 9 main col-

lections: (a) “users” collection holds the details for the users of the system who have an account,

(b) “object” collection holds all the objects, (c) “observations” collection holds all the observa-

tions, (d) “profiles” collection holds the application profiles used by the system, (e) “multimedia”

collection holds the metadata concerning the multimedia objects, (f) “thumbnails” collection con-

tains the thumbnails generated by the system, (g) “statistics” collection holds the the number of

views concerning the objects and the observations.

Apart from these, there are some additional collections holding pieces of data, like the col-

lections that contain the binary data for the multimedia objects and various collections that hold

calculated data, reducing the number of queries. In the following sections we will present sample

data for the most important collections.

Users

1 {

2 "_id" : ObjectId ("52a0bc5ee4b0cb13e882115d"),

3 "_class" : "com.skevakis.observeit.core.model.User",

4 "firstName" : "Giannis",

5 "lastName" : "Skevakis",

6 "email" : "gskevakis@gmail.com",

7 "password" : "$2a$10$ySKcjRa0e8tySpsgkYZZ8",

8 "joinedOn" : ISODate ("2013-12-28T23:03:19.841Z"),

9 "role" : "ADMIN"

10 }

138 Appendix A. Model Implementation Samples

Objects

1 {

2 "_class" : "com.skevakis.observeit.core.model.ObservationObject",

3 "_id" : ObjectId ("52b4a398e4b041056bbc442b"),

4 "attributes" : {

5 "description" : "dnk",

6 "number" : NumberLong(4)

7 },

8 "creationDate" : ISODate ("2013-12-20T20:07:52.150Z"),

9 "label" : "canis lupus",

10 "multimedia" : [

11 ObjectId ("52b4a38ee4b041056bbc4428")

12],

13 "type" : "plants",

14 "userId" : ObjectId ("52b98c0ee4b013c9e11dccb5")

15 }

Observations

1 {

2 "_class" : "com.skevakis.observeit.core.model.Observation",

3 "_id" : ObjectId ("52b4ad06e4b039de5f0f0f4a"),

4 "attributes" : {

5 "description" : "2",

6 "number" : NumberLong(22),

7 "object" : "52b4a398e4b041056bbc442b"

8 },

9 "creationDate" : ISODate ("2013-12-20T20:48:06.966Z"),

10 "label" : "observation of canis lupus",

11 "location" : [

12 37.983715,

13 23.72931

14],

15 "type" : "plants",

16 "userId" : ObjectId ("52b98c0ee4b013c9e11dccb5")

17 }

139

Profiles

1 {

2 "_id" : ObjectId ("52b4a352a6d2221cfd619b44"),

3 "id" : "52a2d730e4b070e8e47573e3",

4 "type" : "animals",

5 "objectAttributes" : [

6 {

7 "key" : "label",

8 "label" : "Title",

9 "description" : "observation label",

10 "type" : "text",

11 "multiplicity" : false,

12 "required" : false

13 },

14 {

15 "key" : "list",

16 "label" : "List",

17 "description" : "observation list",

18 "type" : "list",

19 "multiplicity" : false,

20 "required" : false,

21 "options" : {

22 "listOptions" : [

23 {

24 "order" : 0,

25 "label" : "First Option",

26 "value" : "first"

27 },

28 {

29 "order" : 1,

30 "label" : "Second Option",

31 "value" : "second"

32 },

33 {

34 "order" : 2,

35 "label" : "Third Option",

36 "value" : "third"

37 },

38 {

39 "order" : 3,

40 "label" : "Fourth Option",

140 Appendix A. Model Implementation Samples

41 "value" : "fourth"

42 }

43]

44 }

45 },

46 {

47 "key" : "date",

48 "label" : "Date",

49 "description" : "observation date",

50 "type" : "date",

51 "multiplicity" : false,

52 "required" : false

53 },

54 {

55 "key" : "description",

56 "label" : "Description",

57 "description" : "observation description",

58 "type" : "text",

59 "multiplicity" : false,

60 "required" : false

61 },

62 {

63 "key" : "number",

64 "label" : "Number",

65 "description" : "observation number",

66 "type" : "number",

67 "multiplicity" : false,

68 "required" : false

69 },

70 {

71 "key" : "location",

72 "label" : "Location",

73 "description" : "description about location",

74 "type" : "location",

75 "multiplicity" : false,

76 "required" : false

77 }

78],

79 "observationAttributes" : [

80 {

81 "key" : "label",

82 "label" : "Title",

141

83 "description" : "observation title",

84 "type" : "text",

85 "multiplicity" : false,

86 "required" : false

87 },

88 {

89 "key" : "object",

90 "label" : "Animal",

91 "description" : "animal field description",

92 "type" : "object",

93 "multiplicity" : false,

94 "required" : false

95 },

96 {

97 "key" : "list",

98 "label" : "List",

99 "description" : "observation list",

100 "type" : "list",

101 "multiplicity" : false,

102 "required" : false,

103 "options" : {

104 "listOptions" : [

105 {

106 "order" : 0,

107 "label" : "First Option",

108 "value" : "first"

109 },

110 {

111 "order" : 0,

112 "label" : "Second Option",

113 "value" : "second"

114 },

115 {

116 "order" : 0,

117 "label" : "Third Option",

118 "value" : "third"

119 },

120 {

121 "order" : 0,

122 "label" : "Fourth Option",

123 "value" : "fourth"

124 }

142 Appendix A. Model Implementation Samples

125]

126 }

127 },

128 {

129 "key" : "date",

130 "label" : "Date",

131 "description" : "observation date",

132 "type" : "date",

133 "multiplicity" : false,

134 "required" : false

135 },

136 {

137 "key" : "username",

138 "label" : "Your name",

139 "description" : "observation description",

140 "type" : "text",

141 "multiplicity" : false,

142 "required" : false

143 },

144 {

145 "key" : "number",

146 "label" : "Number",

147 "description" : "observation number",

148 "type" : "number",

149 "multiplicity" : false,

150 "required" : false

151 },

152 {

153 "key" : "location",

154 "label" : "Location",

155 "description" : "description about location",

156 "type" : "location",

157 "multiplicity" : false,

158 "required" : false

159 }

160]

161 }

143

Multimedia

1 {

2 "_class" : "com.skevakis.observeit.core.model.Video",

3 "_id" : ObjectId ("52b55357e4b0dd7e997b5bc3"),

4 "duration" : NumberLong(28),

5 "fileId" : ObjectId ("52b55356e4b0dd7e997b5bb7"),

6 "height" : 360,

7 "objectId" : ObjectId ("52b4a398e4b041056bbc442b"),

8 "type" : "video",

9 "width" : 202

10 }

Statistics

1 {

2 "_class" : "com.skevakis.observeit.core.model.Statistics",

3 "_id" : ObjectId ("52b70e68e4b05263c23412d7"),

4 "views" : 29

5 }

Appendix B

Restful Web Services

This appendix describes a list of the web services that are provided by the system. All the services

are based on Representational state transfer (REST) [34]. The data format supported is JSON,

although the services can be easily extended to support other formats as well. The services have

been categorized in six categories:

• “User”: describes services that are relevant to the user management.

• “Object”: contains services that handle the objects of the system.

• “Observation”: contains services that handle the observations.

• “Application Profile”: describes services concerning the application profiles.

• “Multimedia”: describes the services about the the multimedia.

• “Statistics”: contains services that expose the statistics of the objects and the observations.

The services for each category are documented below.

146 Appendix B. Restful Web Services

B.1 User

Table B.1: RESTful Service: Get all users.

URL /user

Method GET

Description Returns the user list.

Example

GET /user

[
{

"id":"52b98c0ee4b013c9e11dccb5",
"firstName":"Giannis",
"lastName":"Skevakis",
"email":"giannis@gmail.com",
"joinedOn":1388271799841,
"lastSeen":1389202911470,
"imageId":"52cd8e0d74d245d150395d4c",
"role":"ADMIN"

},
{

"id":"52bf58b774d27e9323764752",
"firstName":"Giannis",
"lastName":"Skevakis",
"email":"giannis.86@gmail.com",
"joinedOn":1388271799841,
"role":"USER"

}
]

B.1. User 147

Table B.2: RESTful Service: Get user’s details.

URL /user/{id}

Method GET

Parameters id: the user’s id

Description Returns the details of the user.

Example

GET /user/52b98c0ee4b013c9e11dccb5

{
"id":"52b98c0ee4b013c9e11dccb5",
"firstName":"Giannis",
"lastName":"Skevakis",
"email":"giannis@gmail.com",
"joinedOn":1388271799841,
"lastSeen":1397168064393,
"imageId":"52cd8e0d74d245d150395d4c",
"role":"ADMIN",
"statistics":{

"id":"52b98c0ee4b013c9e11dccb5",
"observations":23,
"multimedia":12

}
}

148 Appendix B. Restful Web Services

Table B.3: RESTful Service: Update user’s details.

URL /user/update/{id}

Method POST
Parameters firstName: the new user’s first name

lastName: the new last name
email: the new email
imageId: the new user’s image

Description Updates the user’s details and returns the new data.

Example

POST /user/52b98c0ee4b013c9e11dccb5

{
"id":"52b98c0ee4b013c9e11dccb5",
"firstName":"Giannis",
"lastName":"Skevakis",
"email":"giannis@gmail.com",
"joinedOn":1388271799841,
"lastSeen":1397168064393,
"imageId":"52cd8e0d74d245d150395d4c",
"role":"ADMIN",
"statistics":{

"id":"52b98c0ee4b013c9e11dccb5",
"observations":23,
"multimedia":12

}
}

Table B.4: RESTful Service: Delete user.

URL /user/{id}

Method DELETE

Parameters id: the user’s id

Description Deletes the user.

Example

DELETE /user/52b98c0ee4b013c9e11dccb5

B.2. Object 149

B.2 Object

Table B.5: RESTful Service: Create object.

URL /object

Method POST

Description Create a new object and return it.

Example

POST /object

{
"id":"52b70bc6e4b032a73a7c1aa5",
"type":"animals",
"createdOn":1387727814194,
"label":"platipus",
"user":"52b98c0ee4b013c9e11dccb5",
"multimedia":[

"52b70bc0e4b032a73a7c1aa2"
]

}

150 Appendix B. Restful Web Services

Table B.6: RESTful Service: Get objects.

URL /object

Method GET
Parameters size: the number of elements for each page (default: 10)

page: the page number (default: 0)
Description Returns the objects in the system, sorted by creation date and

with paging.

Example

GET /object?size=10&page=0

{
"content":[

{
"id":"52b70bc6e4b032a73a7c1aa5",
"type":"animals",
"createdOn":1387727814194,
"label":"platipus",
"user":"52b98c0ee4b013c9e11dccb5",
"multimedia":[

"52b70bc0e4b032a73a7c1aa2"
]

},
{

"id":"52b58fc7e4b0d89d2f5327d8",
"type":"animals",
"createdOn":1387630535927,
"label":"test object animal",
"user":"52b98c0ee4b013c9e11dccb5"

},
...

],
"numberOfElements":5,
"lastPage":true,
"firstPage":true,
"totalPages":1,
"sort":[

{
"direction":"DESC",
"property":"creationDate",
"ignoreCase":false,
"ascending":false

}
],
"totalElements":5,
"size":10,
"number":0

}

B.2. Object 151

Table B.7: RESTful Service: Get object.

URL /object/{id}

Method GET

Parameters id: the object’s id

Description Returns the object.

Example

GET /object/52b70bc6e4b032a73a7c1aa5

{
"id":"52b70bc6e4b032a73a7c1aa5",
"type":"animals",
"createdOn":1387727814194,
"label":"platipus",
"creator":{

"id":"52b98c0ee4b013c9e11dccb5",
"firstName":"Giannis",
"lastName":"Skevakis",
"email":"giannis@gmail.com",
"joinedOn":1388271799841,
"lastSeen":1389202911470,
"imageId":"52cd8e0d74d245d150395d4c",
"role":"ADMIN",
"statistics":{

"id":"52b98c0ee4b013c9e11dccb5",
"observations":24,
"multimedia":12

}
},
"multimedia":[

{
"type":"image",
"id":"52b70bc0e4b032a73a7c1aa2",
"fileId":"52b70bc0e4b032a73a7c1a9f",
"height":1200,
"width":1920

}
],
"statistics":{

"id":"52b70bc6e4b032a73a7c1aa5",
"views":89,
"likes":0,
"observations":1,
"multimedia":1

}
}

152 Appendix B. Restful Web Services

Table B.8: RESTful Service: Get objects of a specific type.

URL /object/type/{type}

Method GET
Parameters type: the type of objects from the application profiles

count: the number of elements for each page (default: 10)
page: the page number (default: 0)

Description Returns the objects of the type, sorted by creation date and with
paging.

Example

GET /object/type/animals?size=10&page=0

{
"content":[

{
"id":"52b70bc6e4b032a73a7c1aa5",
"type":"animals",
"createdOn":1387727814194,
"label":"platipus",
"user":"52b98c0ee4b013c9e11dccb5",
"multimedia":[

"52b70bc0e4b032a73a7c1aa2"
]

},
{

"id":"52b58fc7e4b0d89d2f5327d8",
"type":"animals",
"createdOn":1387630535927,
"label":"test object animal",
"user":"52b98c0ee4b013c9e11dccb5"

},
...

],
"numberOfElements":5,
"lastPage":true,
"firstPage":true,
"totalPages":1,
"sort":[

{
"direction":"DESC",
"property":"creationDate",
"ignoreCase":false,
"ascending":false

}
],
"totalElements":5,
"size":10,
"number":0

}

B.2. Object 153

Table B.9: RESTful Service: Get latest objects.

URL /object/latest

Method GET
Parameters count: the number of elements for each page (default: 10)

page: the page number (default: 0)

Description Returns the latest created objects.

Example

GET /object/latest?count=10&page=0

{
"id":"52b70bc6e4b032a73a7c1aa5",
"type":"animals",
"createdOn":1387727814194,
"label":"platipus",
"creator":{

"id":"52b98c0ee4b013c9e11dccb5",
"firstName":"Giannis",
"lastName":"Skevakis",
"email":"giannis@gmail.com",
"joinedOn":1388271799841,
"lastSeen":1389202911470,
"imageId":"52cd8e0d74d245d150395d4c",
"role":"ADMIN",
"statistics":{

"id":"52b98c0ee4b013c9e11dccb5",
"observations":24,
"multimedia":12

}
},
"multimedia":[

{
"type":"image",
"id":"52b70bc0e4b032a73a7c1aa2",
"fileId":"52b70bc0e4b032a73a7c1a9f",
"height":1200,
"width":1920

}
],
"statistics":{

"id":"52b70bc6e4b032a73a7c1aa5",
"views":89,
"likes":0,
"observations":1,
"multimedia":1

}
}

154 Appendix B. Restful Web Services

Table B.10: RESTful Service: Search objects.

URL /object/search/{type}

Method GET
Parameters type: the type of objects from the application profiles

query: the search query
count: the number of elements for each page (default: 10)
page: the page number (default: 0)

Description Returns the objects that match the query, sorted by creation date
and with paging.

Example

GET /object/search/animals?query=test&size=10&page=0

{
"content":[

{
"id":"52b70bc6e4b032a73a7c1aa5",
"type":"animals",
"createdOn":1387727814194,
"label":"platipus",
"user":"52b98c0ee4b013c9e11dccb5",
"multimedia":[

"52b70bc0e4b032a73a7c1aa2"
]

},
{

"id":"52b58fc7e4b0d89d2f5327d8",
"type":"animals",
"createdOn":1387630535927,
"label":"test object animal",
"user":"52b98c0ee4b013c9e11dccb5"

},
...

],
"numberOfElements":5,
"lastPage":true,
"firstPage":true,
"totalPages":1,
"sort":[

{
"direction":"DESC",
"property":"creationDate",
"ignoreCase":false,
"ascending":false

}
],
"totalElements":5,
"size":10,
"number":0

}

B.2. Object 155

Table B.11: RESTful Service: Delete object.

URL /object/{id}

Method DELETE

Parameters id: the object’s id

Description Deletes the object.

Example

DELETE /object/52b98c0ee4b013c9e11dccb5

156 Appendix B. Restful Web Services

B.3 Observation

Table B.12: RESTful Service: Create observation.

URL /observation

Method POST

Description Create a new observation and return it.

Example

POST /observation

{
"id":"52ca6f1e74d2423694ed75d6",
"label":"another test",
"creator":"Giannis Skevakis",
"thumbnailId":"52ca6f1374d2423694ed75bd",
"createdOn":1388998430171

}

B.3. Observation 157

Table B.13: RESTful Service: Get observation.

URL /observation/{id}

Method GET

Parameters id: the observation’s id

Description Returns the observation.

Example

GET /observation/52b70bc6e4b032a73a7c1aa5

{
"id":"52ca6f1e74d2423694ed75d6",
"type":"plants",
"createdOn":1388998430171,
"label":"another test",
"location":{

"longitude":23.729309999999998,
"latitude":37.983715

},
"creator":{

"id":"52bf58b774d27e9323764752",
"firstName":"Giannis",
"lastName":"Skevakis",
"email":"giannis.86@gmail.com",
"joinedOn":1388271799841,
"role":"USER"

},
"creatorId":"52bf58b774d27e9323764752",
"multimedia":[
{

"type":"image",
"id":"52ca6f1374d2423694ed75c0",
"fileId":"52ca6f1374d2423694ed75bd",
"height":1200,
"width":1920

},
{

"type":"video",
"id":"52ca6f1774d2423694ed75cf",
"fileId":"52ca6f1674d2423694ed75c3",
"height":360,
"width":202,
"duration":28

}
],
"statistics":{

"id":"52ca6f1e74d2423694ed75d6",
"views":57,
"likes":0

}
}

158 Appendix B. Restful Web Services

Table B.14: RESTful Service: Get observations.

URL /observation

Method GET
Parameters size: the number of elements for each page (default: 10)

page: the page number (default: 0)
Description Returns the observations in the system, sorted by creation date

and with paging.

Example

GET /observation?size=10&page=0

{
"content":[

{
"id":"52ca6f1e74d2423694ed75d6",
"type":"plants",
"createdOn":1388998430171,
"label":"another test",
"location":{

"longitude":23.729309999999998,
"latitude":37.983715

},
"creatorId":"52bf58b774d27e9323764752",
"multimedia":[

"52ca6f1374d2423694ed75c0",
"52ca6f1774d2423694ed75cf",
"52ca6f1974d2423694ed75d5"

]
},
...

],
"size":10,
"number":0,
"sort":[

{
"direction":"DESC",
"property":"creationDate",
"ignoreCase":false,
"ascending":false

}
],
"totalElements":27,
"numberOfElements":10,
"totalPages":3,
"firstPage":true,
"lastPage":false

}

B.3. Observation 159

Table B.15: RESTful Service: Get object’s observations.

URL /object/{id}/observations

Method GET
Parameters id: the object’s id

count: the number of elements for each page (default: 10)
page: the page number (default: 0)

Description Returns the observations about a single object, sorted by creation
date and with paging.

Example

GET /object/52b70bc6e4b032a73a7c1aa5/observations?count=10&page=0

{
"content":[

{
"id":"52b70c66e4b032a73a7c1b0f",
"type":"animals",
"createdOn":1387727974904,
"label":"test observation statistics",
"location":{

"longitude":23.729309999999998,
"latitude":37.983715

},
"creator":{

"id":"52b98c0ee4b013c9e11dccb5",
"firstName":"Giannis",
"lastName":"Skevakis",
...

},
"multimedia":[

{
"type":"video",
"id":"52b70c4be4b032a73a7c1b0c",
"fileId":"52b70c4ae4b032a73a7c1b00",
"height":360,
"width":202,
"duration":28

}
],
"objectId":"52b70bc6e4b032a73a7c1aa5",
"statistics":{

"id":"52b70c66e4b032a73a7c1b0f",
"views":79,
"likes":0

}
}

],
"size":10,
"number":0,
"totalElements":1,
"totalPages":1

}

160 Appendix B. Restful Web Services

Table B.16: RESTful Service: Get user’s observations.

URL /user/{id}/observations

Method GET
Parameters id: the user’s id

count: the number of elements for each page (default: 10)
page: the page number (default: 0)

Description Returns the observations of a single user, sorted by creation date
and with paging.

Example

GET /user/52b70bc6e4b032a73a7c1aa5/observations?count=10&page=0

{
"content":[

{
"id":"52c7b801e4b021e06f0b85f9",
"type":"plants",
"createdOn":1388820481886,
"label":"test with audio",
"location":{

"longitude":23.729309999999998,
"latitude":37.983715

},
...

},
{

"id":"52c7174ae4b0d4610943ce82",
"type":"plants",
"createdOn":1388779338543,
"label":"tst",
"location":{

"longitude":23.729309999999998,
"latitude":37.983715

},
...

},
...

],
"size":10,
"number":0,
"totalElements":24,
"numberOfElements":10,
"totalPages":3,
"firstPage":true,
"lastPage":false

}

B.3. Observation 161

Table B.17: RESTful Service: Get observations of a single type.

URL /observation/type/{type}

Method GET
Parameters type: the type’s name

count: the number of elements for each page (default: 10)
page: the page number (default: 0)

Description Returns the observations of a single type, sorted by creation date
and with paging.

Example

GET /observation/type/animals?count=10&page=0

{
"content":[

{
"id":"52c2dfd5e4b083bd6b95e474",
"type":"animals",
"createdOn":1388502997420,
"label":"test",
"location":{

"longitude":23.729309999999998,
"latitude":37.983715

},
...

},
{

"id":"52c27a5ee4b07b2b9ff8c6a6",
"type":"animals",
"createdOn":1388477022759,
"label":null,
...

},
...

],
"size":10,
"number":0,
"totalElements":6,
"numberOfElements":6,
"totalPages":1,
"firstPage":true,
"lastPage":true

}

162 Appendix B. Restful Web Services

Table B.18: RESTful Service: Get latest observations.

URL /observation/latest

Method GET
Parameters count: the number of elements for each page (default: 10)

page: the page number (default: 0)

Description Returns the latest created observations.

Example

GET /observation/latest?count=10&page=0

{
"content":[

{
"id":"52ca6f1e74d2423694ed75d6",
"type":"plants",
"createdOn":1388998430171,
"label":"another test",
"location":{
"longitude":23.729309999999998,
"latitude":37.983715
},
"creator":{
"id":"52bf58b774d27e9323764752",
"firstName":"Giannis",
"lastName":"Skevakis",
"email":"giannis.86@gmail.com",
"joinedOn":1388271799841,
"role":"USER"
},
...

},
...

],
"size":10,
"number":0,
"sort":[

{
"direction":"DESC",
"property":"creationDate",
"ignoreCase":false,
"ascending":false

}
],
"totalElements":27,
"numberOfElements":10,
"totalPages":3,
"firstPage":true,
"lastPage":false

}

B.3. Observation 163

Table B.19: RESTful Service: Get most popular observations.

URL /observation/popular

Method GET
Parameters count: the number of elements for each page (default: 10)

page: the page number (default: 0)

Description Returns the most popular observations.

Example

GET /observation/popular?count=10&page=0

{
"content":[

{
"id":"52ca6f1e74d2423694ed75d6",
"type":"plants",
"createdOn":1388998430171,
"label":"another test",
"location":{
"longitude":23.729309999999998,
"latitude":37.983715
},
"creator":{
"id":"52bf58b774d27e9323764752",
"firstName":"Giannis",
"lastName":"Skevakis",
"email":"giannis.86@gmail.com",
"joinedOn":1388271799841,
"role":"USER"
},
...

},
...

],
"size":10,
"number":0,
"sort":[

{
"direction":"DESC",
"property":"creationDate",
"ignoreCase":false,
"ascending":false

}
],
"totalElements":27,
"numberOfElements":10,
"totalPages":3,
"firstPage":true,
"lastPage":false

}

164 Appendix B. Restful Web Services

Table B.20: RESTful Service: Search observations.

URL /observation/search/{type}

Method GET
Parameters type: the type of observations from the application profiles

query: the search query
count: the number of elements for each page (default: 10)
page: the page number (default: 0)

Description Returns the observations that match the query, sorted by creation
date and with paging.

Example

GET /observation/search/animals?query=test&size=10&page=0

{
"content":[

{
"id":"52ca6f1e74d2423694ed75d6",
"type":"plants",
"createdOn":1388998430171,
"label":"another test",
"location":{
"longitude":23.729309999999998,
"latitude":37.983715
},
"creator":{
"id":"52bf58b774d27e9323764752",
"firstName":"Giannis",
"lastName":"Skevakis",
"email":"giannis.86@gmail.com",
"joinedOn":1388271799841,
"role":"USER"
},
...

},
...

],
"size":10,
"number":0,
"sort":[

{
"direction":"DESC",
"property":"creationDate",
"ignoreCase":false,
"ascending":false

}
],
"totalElements":27,
"numberOfElements":10,
"totalPages":3,
"firstPage":true,
"lastPage":false

}

B.3. Observation 165

Table B.21: RESTful Service: Delete observation.

URL /observation/{id}

Method DELETE

Parameters id: the observation’s id

Description Deletes the observation.

Example

DELETE /observation/52b98c0ee4b013c9e11dccb5

166 Appendix B. Restful Web Services

B.4 Application Profile

Table B.22: RESTful Service: Create application profile.

URL /profile

Method POST

Description Creates a new application profile and returns it.

Example

POST /profile

{
"id":"52b4a352a6d2221cfd619b44",
"type":"animals",
"objectAttributes":[

{
"key":"label",
"label":"Title",
"description":"observation label",
"type":"text",
"multiplicity":false,
"required":false

},
{

"key":"description",
"label":"Description",
"description":"observation description",
"type":"text",
"multiplicity":false,
"required":false

}
],
"observationAttributes":[

{
"key":"label",
"label":"Title",
"description":"observation title",
"type":"text",
"multiplicity":false,
"required":false

},
{

"key":"object",
"label":"Animal",
"description":"animal field description",
"type":"object",
...

},
]

}

B.4. Application Profile 167

Table B.23: RESTful Service: Get application profiles.

URL /profile

Method GET

Description Get the application profiles.

Example

GET /profile

[
{

"id":"52b4a352a6d2221cfd619b44",
"type":"animals",
"objectAttributes":[

{
"key":"label",
"label":"Title",
"description":"observation label",
"type":"text",
"multiplicity":false,
"required":false

},
...

],
"observationAttributes":[

{
"key":"label",
"label":"Title",
"description":"observation title",
"type":"text",
"multiplicity":false,
"required":false

},
...

]
},
{

"id":"52b4a37aa6d2221cfd619b45",
"type":"plants",
"objectAttributes":[

...
],
"observationAttributes":[

...
]

}
]

168 Appendix B. Restful Web Services

Table B.24: RESTful Service: Get application profile details.

URL /profile/{type}

Method GET

Parameters type: the profile’s type

Description Returns the details of the application profile

Example

GET /profile/animals

{
"id":"52b4a352a6d2221cfd619b44",
"type":"animals",
"objectAttributes":[

{
"key":"label",
"label":"Title",
"description":"observation label",
"type":"text",
"multiplicity":false,
"required":false

},
{

"key":"description",
"label":"Description",
"description":"observation description",
"type":"text",
"multiplicity":false,
"required":false

}
],
"observationAttributes":[

{
"key":"label",
"label":"Title",
"description":"observation title",
"type":"text",
"multiplicity":false,
"required":false

},
{

"key":"object",
"label":"Animal",
"description":"animal field description",
"type":"object",
"multiplicity":false,
"required":false

},
]

}

B.4. Application Profile 169

Table B.25: RESTful Service: Get application compact data.

URL /details/{type}

Method GET

Parameters type: the profile’s type

Description Returns the details of the application profile.

Example

GET /details/plants

{
"name":"plants",
"objectCount":2,
"observationCount":22,
"objects":[

{
"id":"52b57eace4b0d89d2f53270b",
"label":"test paparouna",
"creator":"Giannis Skevakis",
"thumbnailId":"52b57e81e4b0d89d2f532703",
"createdOn":1387626156392

},
{

"id":"52b4a398e4b041056bbc442b",
"label":"canis lupus",
"creator":"Giannis Skevakis",
"thumbnailId":"52b4a38ee4b041056bbc4425",
"createdOn":1387570072150

}
],
"observations":[

{
"id":"52ca6f1e74d2423694ed75d6",
"label":"another test",
"creator":"Giannis Skevakis",
"thumbnailId":"52ca6f1374d2423694ed75bd",
"createdOn":1388998430171

},
{

"id":"52c7174ae4b0d4610943ce82",
"label":"tst",
"creator":"Giannis Skevakis",
"thumbnailId":"52c71746e4b0d4610943ce7c",
"createdOn":1388779338543

}
]

}

170 Appendix B. Restful Web Services

Table B.26: RESTful Service: Delete application profile.

URL /profile/{type}

Method DELETE

Parameters type: the application profile’s type

Description Deletes the application profile.

Example

DELETE /profile/animals

B.5. Multimedia 171

B.5 Multimedia

Table B.27: RESTful Service: Upload new multimedia.

URL /observation/{image | video | audio}

Method POST

Description Upload new multimedia file and return it’s data.

Example

POST /observation/{image | video | audio}

172 Appendix B. Restful Web Services

Table B.28: RESTful Service: Get observation.

URL /observation/{id}

Method GET

Parameters id: the observation’s id

Description Returns the observation.

Example

GET /observation/52b70bc6e4b032a73a7c1aa5

{
"id":"52ca6f1e74d2423694ed75d6",
"type":"plants",
"createdOn":1388998430171,
"label":"another test",
"location":{

"longitude":23.729309999999998,
"latitude":37.983715

},
"creator":{

"id":"52bf58b774d27e9323764752",
"firstName":"Giannis",
"lastName":"Skevakis",
"email":"giannis.86@gmail.com",
"joinedOn":1388271799841,
"role":"USER"

},
"creatorId":"52bf58b774d27e9323764752",
"multimedia":[
{

"type":"image",
"id":"52ca6f1374d2423694ed75c0",
"fileId":"52ca6f1374d2423694ed75bd",
"height":1200,
"width":1920

},
{

"type":"video",
"id":"52ca6f1774d2423694ed75cf",
"fileId":"52ca6f1674d2423694ed75c3",
"height":360,
"width":202,
"duration":28

}
],
"statistics":{

"id":"52ca6f1e74d2423694ed75d6",
"views":57,
"likes":0

}
}

B.5. Multimedia 173

Table B.29: RESTful Service: Get object’s multimedia.

URL /object/{id}/multimedia

Method GET
Parameters id: the object’s id

count: the number of elements for each page (default: 10)
page: the page number (default: 0)

Description Returns the multimedia about a single object, sorted by creation
date and with paging.

Example

GET /object/52b70bc6e4b032a73a7c1aa5/multimedia?count=10&page=0

{
"content":[

{
"id":"52b70c4be4b032a73a7c1b0c",
"objectId":"52b70bc6e4b032a73a7c1aa5",
"fileId":"52b70c4ae4b032a73a7c1b00",
"height":360,
"width":202,
"duration":28

}
],
"size":10,
"number":0,
"totalElements":1,
"numberOfElements":1,
"totalPages":1,
"firstPage":true,
"lastPage":true

}

Table B.30: RESTful Service: Delete multimedia.

URL /multimedia/{id}

Method DELETE

Parameters id: the multimedia’s id

Description Deletes the multimedia.

Example

DELETE /multimedia/52b98c0ee4b013c9e11dccb5

174 Appendix B. Restful Web Services

B.6 Statistics

Table B.31: RESTful Service: Get user statistics.

URL /stats/user/{id}

Method GET

Parameters id: the user’s id

Description Returns the statistics of the user.

Example

GET /stats/user/52b98c0ee4b013c9e11dccb5

{
"id":"52b98c0ee4b013c9e11dccb5",
"observations":23,
"multimedia":12

}

Table B.32: RESTful Service: Get observation statistics.

URL /stats/observation/{id}

Method GET

Parameters id: the observation’s id.

Description Returns the statistics of the observation.

Example

GET /stats/observation/52b98c0ee4b013c9e11dccb5

{
"id":"52b98c0ee4b013c9e11dccb5",
"views":235,
"likes":12

}

B.6. Statistics 175

Table B.33: RESTful Service: Get object statistics.

URL /stats/object/{id}

Method GET

Parameters id: the object’s id.

Description Returns the statistics of the object.

Example

GET /stats/object/52b98c0ee4b013c9e11dccb5

{
"id":"52b98c0ee4b013c9e11dccb5",
"views":235,
"likes":12,
"observations":90,
"multimedia":121

}

Table B.34: RESTful Service: Get application profile type statistics.

URL /stats/type/{type}

Method GET

Parameters type: the type’s name.

Description Returns the statistics of the application profile type.

Example

GET /stats/type/animals

{
"name":"animals",
"objects":10,
"observations":90

}

	Introduction
	Summary of Contributions
	Reader's Guide

	Related Work
	FieldData
	eBird
	Observation.org
	Atlas of Living Australia

	Background
	The Spring Framework
	MongoDB
	Phonegap
	JavaScript
	Elasticsearch
	Xuggler
	Redis

	The Natural Europe project
	The Natural Europe Cultural Environment (NECE)
	The Natural Europe CHO Application Profile
	The MultiMedia Authoring Tool (MMAT)
	The CHO Repository
	The Vocabulary Server

	The metadata management life-cycle
	Connection of the Natural Europe Cultural Environment with BioCASE/GBIF
	Deployment and usage

	Functional Specification
	Stakeholders
	Technical Requirements
	Model
	Meta-Model
	Mobile Application
	Web Application
	Backend

	Use Cases

	Model
	Meta-Model
	Model
	Model Examples

	Architecture
	Client Side Architecture
	Model
	View
	Controller
	Event Bus
	Application Manager
	Router

	Server Side Architecture
	Service Layer
	Business Logic Layer
	Data Layer

	Implementation
	Client Side
	MVC Pattern
	User Interface
	Routing
	Modular Development
	View
	Maps
	Data Adapters
	Development Process

	Server Side
	Persistency
	Indexing
	Caching
	Security

	Graphical User Interface
	Design Process
	User interfaces
	Mobile
	Desktop

	Migration of the Natural Europe data
	Meta-Model definition
	Architecture
	Results

	Conclusion & Future Work
	Bibliography
	Model Implementation Samples
	Restful Web Services
	User
	Object
	Observation
	Application Profile
	Multimedia
	Statistics

