Institutional Repository [SANDBOX]
Technical University of Crete
EN  |  EL

Search

Browse

My Space

Browse by Subject.

ABCDEFGHIJKLMNOPQRSTUVWXYZ

Starts with:

Results

 1-6 from 6 Results - VAR
1 T. Daglis, K. N. Konstantakis, P. Xidonas, P. G. Michaelides and C. Zopounidis, “Solar events and the US energy sector: a novel sectoral spillover GVAR approach introducing indirect GIRFs (IGIRF),” Ann. Oper. Res., July 2023, doi: 10.1007/s10479-023-05471-7.2025-09-11
2 J. Diaz, Z. Agioutantis, D. T. Hristopulos, K. Luxbacher and S. Schafrik, “Forecasting of methane gas in underground coal mines: univariate versus multivariate time series modeling,” Stoch. Environ. Res. Risk Assess., vol. 37, no. 6, pp. 2099–2115, June 2023, doi: 10.1007/s00477-023-02382-8.2025-07-25
3 P. A. Karakasis, A. P. Liavas, N. D. Sidiropoulos, P. G. Simos and E. Papadaki, "Multisubject task-related fMRI data processing via a two-stage generalized canonical correlation analysis," IEEE Trans. Image Process., vol. 31, pp. 4011-4022, doi: 10.1109/TIP.2022.3159125.2023-12-01
4 K.-A. Tsioptsia, E. Zafeiriou, D. Niklis, N. Sariannidis, and C. Zopounidis, “The corporate economic performance of environmentally eligible firms nexus climate change: an empirical research in a Bayesian VAR framework,” Energies, vol. 15, no. 19, Oct. 2022, doi: 10.3390/en15197266.2023-08-31
5 P. A. Karakasis, A. P. Liavas, N. D. Sidiropoulos, P. G. Simos and E. Papadaki, "Multi-subject resting-state fMRI data analysis via generalized Canonical Correlation Analysis," in 2020 28th European Signal Processing Conference (EUSIPCO), Amsterdam, Netherlands, 2021, pp. 1040-1044, doi: 10.23919/Eusipco47968.2020.9287655.2023-05-25
6 L. Zhu, Y. Bao, G. P. Petropoulos, P. Zhang, F. Lu, Q. Lu, Y. Wu, and D. Xu, “Temperature and humidity profiles retrieval in a plain area from Fengyun-3D/HIRAS sensor using a 1D-VAR assimilation scheme,” Remote Sens., vol. 12, no. 3, Feb. 2020. doi: 10.3390/rs120304352021-09-21