URI | http://purl.tuc.gr/dl/dias/A4089B48-BB3C-4F57-824C-80E9B9B318D2 | - |
Αναγνωριστικό | https://doi.org/10.1142/S012906572250006X | - |
Αναγνωριστικό | https://www.worldscientific.com/doi/10.1142/S012906572250006X | - |
Γλώσσα | en | - |
Τίτλος | A new multi-resolution approach to EEG brain modeling using local-global graphs and stochastic petri-nets | en |
Δημιουργός | Bourbakis, Nikolaos G | en |
Δημιουργός | Michalopoulos Kostas | en |
Δημιουργός | Antonakakis Marios | en |
Δημιουργός | Αντωνακακης Μαριος | el |
Δημιουργός | Zervakis Michail | en |
Δημιουργός | Ζερβακης Μιχαηλ | el |
Εκδότης | World Scientific Publishing | en |
Περίληψη | Recent modeling of brain activities encompasses the fusion of different modalities. However, fusing brain modalities requires not only the efficient and compatible representation of the signals but also the benefits associated with it. For instance, the combination of the functional characteristics of EEGs with the structural features of functional magnetic resonance imaging contributes to a better interpretation localization of brain activities. In this paper, we consider the EEG signals as parallel 2D string images from which we extract their visual abstract representations of EEG features. This representation can benefit not only the EEG modeling of the signals but also a future fusion with another modality, like fMRI. In particular, the new methodology, called Bar-LG, provides a reduced discretization of the EEG signals into selected minima/maxima in order to be used in a form of tokens for EEG brain activities of interest. A formal context-free language is used to express and represent the extracted tokens for the selected active brain regions. Then, a Generalized Stochastic Petri-Nets (GSPN) model is used for expressing the functional associations and interactions of these EEG signals as 2D image regions. An illustrative EEG example of epileptic seizure is presented to show the Bar-LG methodology’s abstract capabilities. | en |
Τύπος | Peer-Reviewed Journal Publication | en |
Τύπος | Δημοσίευση σε Περιοδικό με Κριτές | el |
Άδεια Χρήσης | http://creativecommons.org/licenses/by/4.0/ | en |
Ημερομηνία | 2024-04-22 | - |
Ημερομηνία Δημοσίευσης | 2022 | - |
Θεματική Κατηγορία | EEG signals | en |
Θεματική Κατηγορία | Formal language models | en |
Θεματική Κατηγορία | LG graphs | en |
Θεματική Κατηγορία | Stochastic petri nets | en |
Βιβλιογραφική Αναφορά | N. G. Bourbakis, K. Michalopoulos, M. Antonakakis and M. Zervakis, “A new multi-resolution approach to EEG brain modeling using local-global graphs and stochastic petri-nets,” Int. J. Neur. Syst., vol. 32, no. 5, May 2022, doi: 10.1142/S012906572250006X. | en |