Ανάλυση μαγνητοεγκεφαλογραφήματος ατόμων με ήπιες κρανιοεγκεφαλικές κακώσεις με χρήση πολυεπίπεδων δικτύων συνδεσιμότητας και νευρωνικών δικτύων γράφων
Το έργο με τίτλο Ανάλυση μαγνητοεγκεφαλογραφήματος ατόμων με ήπιες κρανιοεγκεφαλικές κακώσεις με χρήση πολυεπίπεδων δικτύων συνδεσιμότητας και νευρωνικών δικτύων γράφων από τον/τους δημιουργό/ούς Kavvouras Sotirios διατίθεται με την άδεια Creative Commons Αναφορά Δημιουργού 4.0 Διεθνές
Βιβλιογραφική Αναφορά
Σωτήριος Κάββουρας, "Ανάλυση μαγνητοεγκεφαλογραφήματος ατόμων με ήπιες κρανιοεγκεφαλικές κακώσεις με χρήση πολυεπίπεδων δικτύων συνδεσιμότητας και νευρωνικών δικτύων γράφων", Διπλωματική Εργασία, Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών, Πολυτεχνείο Κρήτης, Χ
https://doi.org/10.26233/heallink.tuc.99138
Η ήπια κρανιοεγκεφαλική κάκωση (mTBI) είναι μια συχνή νευρολογική πάθηση με σημαντικές γνωστικές και λειτουργικές επιπτώσεις. Η παρούσα διατριβή παρουσιάζει μια ολοκληρωμένη διερεύνηση των νευρωνικών μεταβολών που σχετίζονται με το mTBI με τη χρήση προηγμένων τεχνικών νευροαπεικόνισης και μηχανικής μάθησης. Συγκεκριμένα, χρησιμοποιούμε την ανάλυση της λειτουργικής συνδεσιμότητας πολλαπλών επιπέδων (MLFC), τη μηχανική μάθηση (ML) και τα νευρωνικά δίκτυα γράφων (GNN) για να διαλευκάνουμε τα περίπλοκα μοτίβα της διαταραχής των εγκεφαλικών δικτύων και να παράσχουμε πληροφορίες για τους υποκείμενους νευροφυσιολογικούς μηχανισμούς. Οι μαγνητοεγκεφαλογραφικές (MEG) καταγραφές αποκτήθηκαν από ασθενείς με mTBI και υγιείς μάρτυρες κατά τη διάρκεια καταστάσεων ηρεμίας. Η MLFC καταγράφει πολυεπίπεδες συσχετίσεις σε διάφορες ζώνες συχνοτήτων, αποκαλύπτοντας λεπτές αλλαγές στη συνδεσιμότητα μεταξύ των διάφορων περιοχών του εγκεφάλου. Η ταξινόμηση με τη χρήση της ML αποδεικνύει τη δυνατότητα διάκρισης των ασθενών mTBI από τους υγιείς με βάση τα νευρικά χαρακτηριστικά. Τα GNN μοντελοποιούν τις περιοχές του εγκεφάλου ως γράφο, αποτυπώνοντας πολύπλοκες αλληλεπιδράσεις και μη γραμμικές σχέσεις. Η ενσωμάτωση των GNN ενισχύει την κατανόηση των διαταραχών που σχετίζονται με το mTBI, παρέχοντας μια πιο ολιστική προοπτική. Αν και τα GNN παρουσιάζουν σημαντικά ανώτερες επιδόσεις σε σύγκριση με τις παραδοσιακές μεθόδους μηχανικής μάθησης, επιτυγχάνοντας ακρίβεια περίπου 97% έναντι 80-85%, η εφαρμογή της MLFC παρουσιάζει λιγότερο σαφή αποτελέσματα, με τα αυτά να εμφανίζονται ιδιαίτερα διφορούμενα, κυμαινόμενα μεταξύ 50% και 65%. Η μελέτη μας ενισχύει τις γνώσεις σχετικά με την τροποποιημένη λειτουργική συνδεσιμότητα σε ασθενείς με mTBI. Η συγχώνευση των MLFC, ML και GNN αποκαλύπτει αποχρώσεις της δυναμικής που δεν καταγράφονται από τις παραδοσιακές μεθόδους. Τα ευρήματα αυτά συμβάλλουν στην κατανόηση της παθοφυσιολογίας του mTBI και μπορούν να καθοδηγήσουν εξατομικευμένες παρεμβάσεις.