URI | http://purl.tuc.gr/dl/dias/D3DAB762-BEF1-459E-8EED-185294090425 | - |
Αναγνωριστικό | https://doi.org/10.1007/s10614-022-10277-z | - |
Αναγνωριστικό | https://link.springer.com/article/10.1007/s10614-022-10277-z | - |
Γλώσσα | en | - |
Μέγεθος | 23 pages | en |
Τίτλος | Exploring uncertainty, sensitivity and robust solutions in mathematical programming through Bayesian analysis | en |
Δημιουργός | Tsionas, Mike | en |
Δημιουργός | Philippas Dionisis | en |
Δημιουργός | Zopounidis Konstantinos | en |
Δημιουργός | Ζοπουνιδης Κωνσταντινος | el |
Εκδότης | Springer | en |
Περίληψη | The paper examines the effect of uncertainty on the solution of mathematical programming problems, using Bayesian techniques. We show that the statistical inference of the unknown parameter lies in the solution vector itself. Uncertainty in the data is modeled using sampling models induced by constraints. In this context, the objective is used as prior, and the posterior is efficiently applied via Monte Carlo methods. The proposed techniques provide a new benchmark for robust solutions that are designed without solving mathematical programming problems. We illustrate the benefits of a problem with known solutions and their properties, while discussing the empirical aspects in a real-world portfolio selection problem. | en |
Τύπος | Peer-Reviewed Journal Publication | en |
Τύπος | Δημοσίευση σε Περιοδικό με Κριτές | el |
Άδεια Χρήσης | http://creativecommons.org/licenses/by/4.0/ | en |
Ημερομηνία | 2024-02-27 | - |
Ημερομηνία Δημοσίευσης | 2023 | - |
Θεματική Κατηγορία | Mathematical programming | en |
Θεματική Κατηγορία | Robustness analysis | en |
Θεματική Κατηγορία | Bayesian analysis | en |
Θεματική Κατηγορία | Monte Carlo | en |
Βιβλιογραφική Αναφορά | M. G. Tsionas, D. Philippas and C. Zopounidis, “Exploring uncertainty, sensitivity and robust solutions in mathematical programming through Bayesian analysis,” Comput. Econ., vol. 62, no. 1, pp. 205–227, June 2023, doi: 10.1007/s10614-022-10277-z. | en |