Ιδρυματικό Αποθετήριο [SANDBOX]
Πολυτεχνείο Κρήτης
EN  |  EL

Αναζήτηση

Πλοήγηση

Ο Χώρος μου

Persistent homology analysis of a generalized Aubry-André-Harper model

He Yu, Xia Shiqi, Angelakis Dimitrios, Song Daohong, Chen Zhigang, Leykam Daniel

Πλήρης Εγγραφή


URI: http://purl.tuc.gr/dl/dias/6EEC4123-F14E-49B5-82C7-D5909C981D17
Έτος 2022
Τύπος Δημοσίευση σε Περιοδικό με Κριτές
Άδεια Χρήσης
Λεπτομέρειες
Βιβλιογραφική Αναφορά Y. He, S. Xia, D. G. Angelakis, D. Song, Z. Chen and D. Leykam, “Persistent homology analysis of a generalized Aubry-André-Harper model,” Phys. Rev. B, vol. 106, no. 5, Aug. 2022, doi: 10.1103/physrevb.106.054210. https://doi.org/10.1103/PhysRevB.106.054210
Εμφανίζεται στις Συλλογές

Περίληψη

Observing critical phases in lattice models is challenging due to the need to analyze the finite time or size scaling of observables. We study how the computational topology technique of persistent homology can be used to characterize phases of a generalized Aubry-André-Harper model. The persistent entropy and mean squared lifetime of features obtained using persistent homology behave similarly to conventional measures (Shannon entropy and inverse participation ratio) and can distinguish localized, extended, and critical phases. However, we find that the persistent entropy also clearly distinguishes ordered from disordered regimes of the model. The persistent homology approach can be applied to both the energy eigenstates and the wave packet propagation dynamics.

Υπηρεσίες

Στατιστικά