Το έργο με τίτλο Dark soliton detection using persistent homology από τον/τους δημιουργό/ούς Leykam Daniel, Rondon Irving, Angelakis Dimitrios διατίθεται με την άδεια Creative Commons Αναφορά Δημιουργού 4.0 Διεθνές
Βιβλιογραφική Αναφορά
D. Leykam, I. Rondón and D. G. Angelakis, “Dark soliton detection using persistent homology,” Chaos, vol. 32, no. 7, July 2022, doi: 10.1063/5.0097053.
https://doi.org/10.1063/5.0097053
Classifying images often requires manual identification of qualitative features. Machine learning approaches including convolutional neural networks can achieve accuracy comparable to human classifiers but require extensive data and computational resources to train. We show how a topological data analysis technique, persistent homology, can be used to rapidly and reliably identify qualitative features in experimental image data. The identified features can be used as inputs to simple supervised machine learning models, such as logistic regression models, which are easier to train. As an example, we consider the identification of dark solitons using a dataset of 6257 labeled atomic Bose–Einstein condensate density images.