Ιδρυματικό Αποθετήριο [SANDBOX]
Πολυτεχνείο Κρήτης
EN  |  EL

Αναζήτηση

Πλοήγηση

Ο Χώρος μου

Ανάπτυξη καινοτόμου συστήματος συστάσεων για ταινίες βασισμένο σε μηχανισμούς κοινωνικής επιλογής

Klioumis Georgios

Απλή Εγγραφή


URIhttp://purl.tuc.gr/dl/dias/B652BE2D-2A17-4E14-93E8-E739F84FB208-
Αναγνωριστικόhttps://doi.org/10.26233/heallink.tuc.98707-
Γλώσσαen-
Μέγεθος4 megabytesen
Μέγεθος78 pagesen
ΤίτλοςA Novel social choice mechanisms-based recommender system for the movies domain en
ΤίτλοςΑνάπτυξη καινοτόμου συστήματος συστάσεων για ταινίες βασισμένο σε μηχανισμούς κοινωνικής επιλογήςel
ΔημιουργόςKlioumis Georgiosen
ΔημιουργόςΚλιουμης Γεωργιοςel
Συντελεστής [Επιβλέπων Καθηγητής]Chalkiadakis Georgiosen
Συντελεστής [Επιβλέπων Καθηγητής]Χαλκιαδακης Γεωργιοςel
Συντελεστής [Μέλος Εξεταστικής Επιτροπής]Lagoudakis Michailen
Συντελεστής [Μέλος Εξεταστικής Επιτροπής]Λαγουδακης Μιχαηλel
Συντελεστής [Μέλος Εξεταστικής Επιτροπής]Samoladas Vasilisen
Συντελεστής [Μέλος Εξεταστικής Επιτροπής]Σαμολαδας Βασιληςel
ΕκδότηςΠολυτεχνείο Κρήτηςel
ΕκδότηςTechnical University of Creteen
Ακαδημαϊκή ΜονάδαTechnical University of Crete::School of Electrical and Computer Engineeringen
Ακαδημαϊκή ΜονάδαΠολυτεχνείο Κρήτης::Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστώνel
ΠερίληψηThis is a recommender system for the movies domain. Employing novel item and user probabilistic modelling techniques. Movies are modeled based on their summaries with various Natural Language Processing techniques. Our recommendation process uses a social choice theory mechanism, based on multi-winner elections. Our results indicate that (i)movie summaries are indeed a valuable tool for movie classification, (ii)recommender systems can benefit from the use of probabilistic modelling, (iii)different user types can benefit from different recommendation approaches, (iv)our movie recommendation approach using social choice theory mechanisms is effective on real-world data.en
ΠερίληψηΤα συστήματα συστάσεων είναι εργαλεία λογισμικού που βοηθούν τους χρήστες στην επιλογή αντικειμένων ενδιαφέροντος (λ.χ, ταινίες, εστιατόρια, κ.ο.κ) από ένα μεγάλο σύνολο. Σε αυτήν την εργασία, προτείνουμε ένα εξατομικευμένο σύστημα συστάσεων για τον τομέα των ταινιών, το οποίο χρησιμοποιεί καινοτόμες τεχνικές μοντελοποίησης, καθώς και μία διαδικασία σύστασης βασισμένη σε μηχανισμούς κοινωνικής επιλογής. Στον τομέα της μοντελοποίησης των αντικειμένων, η προσέγγισή μας δημιουργεί ένα πιθανοτικό μοντέλο ταινίας, βασισμένο σε πληροφορίες σχετικά με τα είδη της, που αποκτήθηκαν μέσω της περίληψης της ταινίας μαζί με τη γενική βαθμολογία της. Συγκεκριμένα, στην προσέγγισή μας, οι ταινίες προσδιορίζονται ως πολυδιάστατες κανονικές κατανομές πάνω σε μια σειρά από χαρακτηριστικά που καθορίζουν τις διαστάσεις της κατανομής. Αυτά τα χαρακτηριστικά επιλέγονται ως αποτέλεσμα μιας κατηγοριοποίησης που χρησιμοποιεί ταξινομητές πάνω σε διανύσματα που χαρακτηρίζουν την κάθε ταινία, τα οποία αποκτώνται μέσω μιας σειράς διανυσματικών μετασχηματισμών κειμένου. Πιο συγκεκριμένα, αξιοποιούμε μια σειρά από τεχνικές επεξεργασίας φυσικής γλώσσας για τη μετατροπή των κειμένων περίληψης σε διανυσματικές αναπαραστάσεις, χρησιμοποιώντας τους διανυσματικούς μετασχηματισμούς (i) Term Frequency Inverse Document Frequency (TFIDF), (ii) Class Label Frequency Distance (CLFD) και (iii) Count Vectorizer. Έπειτα, χρησιμοποιούμε (a) την αρχιτεκτονική Classifier Chain, βασισμένη στους (i) Naive Bayes, (ii) Logistic Regression, (iii) Random Forest αλγορίθμους ταξινόμησης - καθώς και (b) ένα Long Short Term Memory (LSTM) νευρωνικό δίκτυο, για την επίλυση του προβλήματος ταξινόμησης πολλαπλών ετικετών της εξαγωγής του συνόλου των ειδών της εκάστοτε ταινίας. Μετά από την αξιολόγηση των παραπάνω τεχνικών, επιλέγουμε να χρησιμοποιήσουμε (a) τον αλγόριθμο Logistic Regression με δεδομένα που έχουν μετασχηματιστεί από το CLFD, και (b) τη μέθοδο LSTM, ως τις τελικές πηγές εξαγωγής πληροφοριών μας. Ακολουθούμε την Bayesian προσέγγιση συστάσεων "You Are What You Consume" των (Babas et. al., 2013), μοντελοποιώντας τους χρήστες ως πολυδιάστατες κανονικές κατανομές με τα ίδια χαρακτηριστικά όπως και οι ταινίες. Η διαδικασία ενημέρωσης του μοντέλου του χρήστη χρησιμοποιεί μια αποδοτική τεχνική Bayesian Learning, μέσω της χρήσης της Normal Inverse Wishart κατανομής. Επιπλέον, χρησιμοποιούμε το ενδιαφέρον του χρήστη για δημοφιλείς ταινίες ως έναν τρόπο ενίσχυσης των πεποιθήσεών μας σχετικά με τις λιγότερο εμφανείς προτιμήσεις του. Η τελική διαδικασία συστάσεών μας, χρησιμοποιεί έναν μηχανισμό κοινωνικής επιλογής βασισμένο σε εκλογές πολλαπλών νικητών. Χρησιμοποιούμε δύο σύνολα ψηφοφόρων που αναθέτουν τις ψήφους τους, βασισμένοι στην πιθανοτική απόκλιση του μοντέλου χρήστη και του αντικειμένου, στους τομείς της δημοφιλίας και των ειδών ταινίας. Η πειραματική αξιολόγηση αυτής της εργασίας πραγματοποιήθηκε με χρήση δύο διαφορετικών τύπων χρηστών του πραγματικού κόσμου. Τα αποτελέσματά μας για το πρώτο σύνολο χρηστών, οι οποίοι χαρακτηρίζονται από την τάση να παρακολουθούν ταινίες που προσελκύουν ευρύ ενδιαφέρον, δείχνουν ότι το σύστημα συστάσεών μας προτείνει ταινίες που βαθμολογούνται με μέσο όρο, 3.4/5 από τον χρήστη. Οι συστάσεις μας για το δεύτερο σύνολο χρηστών, οι οποίοι χαρακτηρίζονται από την τάση τους να παρακολουθούν ταινίες που δεν προσελκύουν ευρύ ενδιαφέρον, επιτυγχάνουν μέση βαθμολογία 3.5/5. Τα αποτελέσματά μας δείχνουν: (i) ότι οι περιλήψεις των ταινιών αποτελούν πράγματι ένα χρήσιμο εργαλείο για την ταξινόμηση ταινιών, (ii) ότι τα συστήματα συστάσεων μπορούν να επωφεληθούν από τη χρήση πιθανοτικής μοντελοποίησης, (iii) ότι διαφορετικοί τύποι χρηστών μπορούν να επωφεληθούν από διαφορετικές προσεγγίσεις συστάσεων, και ότι (iv) η προσέγγισή μας για συστάσεις ταινιών με χρήση μηχανισμών κοινωνικής επιλογής είναι αποτελεσματική σε πραγματικά δεδομένα. el
ΤύποςΔιπλωματική Εργασίαel
ΤύποςDiploma Worken
Άδεια Χρήσηςhttp://creativecommons.org/licenses/by-nc/4.0/en
Ημερομηνία2024-02-19-
Ημερομηνία Δημοσίευσης2024-
Θεματική ΚατηγορίαΣύστημα συστάσεωνel
Θεματική ΚατηγορίαRecommender systemsen
Θεματική ΚατηγορίαΘεωρία κοινωνικής επιλογήςel
Θεματική ΚατηγορίαSocial choice theoryen
Θεματική ΚατηγορίαRecommender systemen
Θεματική ΚατηγορίαΣυστήματα συστάσεωνel
Βιβλιογραφική ΑναφοράGeorgios Klioumis, "A Novel social choice mechanisms-based recommender system for the movies domain", Diploma Work, School of Electrical and Computer Engineering, Technical University of Crete, Chania, Greece, 2024en
Βιβλιογραφική ΑναφοράΓεώργιος Κλιούμης, "Ανάπτυξη καινοτόμου συστήματος συστάσεων για ταινίες βασισμένο σε μηχανισμούς κοινωνικής επιλογής", Διπλωματική Εργασία, Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών, Πολυτεχνείο Κρήτης, Χανιά, Ελλάς, 2024el

Διαθέσιμα αρχεία

Υπηρεσίες

Στατιστικά