Institutional Repository [SANDBOX]
Technical University of Crete
EN  |  EL

Search

Browse

My Space

Ionic liquid as morphology-directing agent of two-dimensional Bi2WO6: new insight into photocatalytic and antibacterial activity

Pancielejko, Anna, Łuczak Justyna, Lisowski Wojciech F., Trykowski, Grzegorz, Venieri Danai, Zaleska-Medynska, Adriana, Mazierski, Paweł

Simple record


URIhttp://purl.tuc.gr/dl/dias/A4739572-A135-431A-AC6E-2FECC8F44365-
Identifierhttps://doi.org/10.1016/j.apsusc.2022.153971-
Identifierhttps://www.sciencedirect.com/science/article/pii/S0169433222015136-
Languageen-
Extent12 pagesen
TitleIonic liquid as morphology-directing agent of two-dimensional Bi2WO6: new insight into photocatalytic and antibacterial activityen
CreatorPancielejko, Annaen
CreatorŁuczak Justynaen
CreatorLisowski Wojciech F.en
CreatorTrykowski, Grzegorzen
CreatorVenieri Danaien
CreatorΒενιερη Δαναηel
CreatorZaleska-Medynska, Adrianaen
CreatorMazierski, Pawełen
PublisherElsevieren
Content SummaryAn efficient and durable utilization of light to drive photocatalytic reactions still requires the overcoming of barriers. Herein, two-dimensional (2D) ultrathin IL_Bi2WO6 (IL_BWO) photocatalysts were prepared for the first time via ionic liquid-assisted hydrothermal route by adjusting the amount of tetrabutylammonium chloride [TBA][Cl], synthesis temperature and duration. IL played the role of morphology-directing agent given by selecting the amount of IL, the control of nanosheet thickness was possible. The replacement of IL with KCl resulted in the growth of similar nanostructure, but with higher thickness, while, the absence of Cl− caused the formation of clew-like microspheres. Two different model experiments, phenol degradation, and inactivation of Escherichia coli and Staphylococcus aureus bacteria were chosen to evaluate the photocatalytic activity. The improved photocatalytic performance was attributed to (i) the ultrathin structure, which let for shorter diffusion distance, (ii) the nitrogen presence in the photocatalyst structure, and (iii) the oxygen vacancies formation. The •OH and h+ were the main species involved in the mechanism of photooxidation, and could be also responsible for the enhanced antimicrobial properties. The unique strategy of IL application establishes a new insight for a controllable preparation of 2D Bi2WO6 with improvement photocatalytic and antibacterial properties.en
Type of ItemPeer-Reviewed Journal Publicationen
Type of ItemΔημοσίευση σε Περιοδικό με Κριτέςel
Licensehttp://creativecommons.org/licenses/by-nc-nd/4.0/en
Date of Item2024-01-31-
Date of Publication2022-
SubjectBi2WO6en
Subject2D structureen
SubjectNanosheetsen
SubjectIonic liquiden
SubjectAntibacterial propertiesen
Bibliographic CitationA. Pancielejko, J. Łuczak, W. Lisowski, G. Trykowski, D. Venieri, A. Zaleska-Medynska, and P. Mazierski, “Ionic liquid as morphology-directing agent of two-dimensional Bi2WO6: new insight into photocatalytic and antibacterial activity,” Appl. Surf. Sci., vol. 599, Oct. 2022, doi: 10.1016/j.apsusc.2022.153971.en

Available Files

Services

Statistics