Ιδρυματικό Αποθετήριο [SANDBOX]
Πολυτεχνείο Κρήτης
EN  |  EL

Αναζήτηση

Πλοήγηση

Ο Χώρος μου

Non-parametric kernel-based estimation and simulation of precipitation amount

Pavlidis Andreas, Agou Vasiliki, Christopoulos Dionysios

Απλή Εγγραφή


URIhttp://purl.tuc.gr/dl/dias/749E2767-D43A-426D-86AB-8F46F12DF9B3-
Αναγνωριστικόhttps://doi.org/10.1016/j.jhydrol.2022.127988-
Αναγνωριστικόhttps://www.sciencedirect.com/science/article/pii/S0022169422005637-
Γλώσσαen-
Μέγεθος18 pagesen
ΤίτλοςNon-parametric kernel-based estimation and simulation of precipitation amounten
ΔημιουργόςPavlidis Andreasen
ΔημιουργόςΠαυλιδης Ανδρεαςel
ΔημιουργόςAgou Vasilikien
ΔημιουργόςΑγου Βασιλικηel
ΔημιουργόςChristopoulos Dionysiosen
ΔημιουργόςΧριστοπουλος Διονυσιοςel
ΕκδότηςElsevieren
ΠεριγραφήThis research is co-financed by Greece and the European Union (European Social Fund- ESF) through the Operational Programme “Human Resources Development, Education and Lifelong Learning 2014–2020” in the context of project “Gaussian Anamorphosis with Kernel Estimators for Spatially Distributed Data and Time Series and Applications in the Analysis of Precipitation” (MIS 5052133).en
ΠερίληψηThe probability distribution of precipitation amount strongly depends on geography, climate zone, and time scale considered. Closed-form parametric probability distributions are not sufficiently flexible to provide accurate and universal models for precipitation amount over different time scales. This paper derives non-parametric estimates of the cumulative distribution function (CDF) of precipitation amount for wet periods. The CDF estimates are obtained by integrating the kernel density estimator leading to semi-explicit CDF expressions for different kernel functions. An adaptive plug-in bandwidth estimator (KCDE) is investigated, using both synthetic data sets and reanalysis precipitation data from the Mediterranean island of Crete (Greece). It is shown that KCDE provides better estimates of the probability distribution than the standard empirical (staircase) estimate and kernel-based estimates that use the normal reference bandwidth. It is also demonstrated that KCDE enables the simulation of non-parametric precipitation amount distributions by means of the inverse transform sampling method.en
ΤύποςPeer-Reviewed Journal Publicationen
ΤύποςΔημοσίευση σε Περιοδικό με Κριτέςel
Άδεια Χρήσηςhttp://creativecommons.org/licenses/by/4.0/en
Ημερομηνία2023-12-21-
Ημερομηνία Δημοσίευσης2022-
Θεματική ΚατηγορίαPrecipitationen
Θεματική ΚατηγορίαKernel estimationen
Θεματική ΚατηγορίαSimulationen
Θεματική ΚατηγορίαNon-Gaussianen
Θεματική ΚατηγορίαReanalysis dataen
Θεματική ΚατηγορίαNon-parametric estimateen
Βιβλιογραφική ΑναφοράA. Pavlides, V. D. Agou, and D. T. Hristopulos, “Non-parametric kernel-based estimation and simulation of precipitation amount,” J. Hydrol., vol. 612, Sep. 2022, 10.1016/j.jhydrol.2022.127988.en

Υπηρεσίες

Στατιστικά