Ιδρυματικό Αποθετήριο [SANDBOX]
Πολυτεχνείο Κρήτης
EN  |  EL

Αναζήτηση

Πλοήγηση

Ο Χώρος μου

XR-RF imaging enabled by software-defined metasurfaces and machine learning: foundational vision, technologies and challenges

Liaskos Christos, Tsioliaridou Ageliki, Georgopoulos Konstantinos, Morianos Ioannis, Ioannidis Sotirios, Salem Iosif, Manessis Dionysios, Schmid Stefan, Tyrovolas Dimitrios, Tegos Sotiris A., Mekikis Prodromos-Vasileios, Diamantoulakis Panagiotis, Pitilakis Alexandros, Kantartzis, Nikolaos V, Karagiannidis, George K, Tasolamprou Anna, Tsilipakos Odysseas, Kafesaki Maria, Akyildiz, Ian Fuat, Pitsillides, Andreas, Pateraki Maria, Vakalellis Michael, Spais Ilias

Πλήρης Εγγραφή


URI: http://purl.tuc.gr/dl/dias/129703E9-CA30-4177-8BAD-4996461C283C
Έτος 2022
Τύπος Δημοσίευση σε Περιοδικό με Κριτές
Άδεια Χρήσης
Λεπτομέρειες
Βιβλιογραφική Αναφορά C. Liaskos, A. Tsioliaridou, K. Georgopoulos, I. Morianos, S. Ioannidis, I. Salem, D. Manessis, S. Schmid, D. Tyrovolas, S. A. Tegos, P. -V. Mekikis, P. D. Diamantoulakis, A. Pitilakis, N. V. Kantartzis, G. K. Karagiannidis, A. C. Tasolamprou, O. Tsilipakos, M. Kafesaki, I. F. Akyildiz, A. Pitsillides, M. Pateraki, M. Vakalellis and I. Spais, "XR-RF imaging enabled by software-defined metasurfaces and machine learning: foundational vision, technologies and challenges," IEEE Access, vol. 10, pp. 119841-11986 https://doi.org/10.1109/ACCESS.2022.3219871
Εμφανίζεται στις Συλλογές

Περίληψη

In this work, we present a new approach to Extended Reality (XR), denoted as iCOPYWAVES, which seeks to offer naturally low-latency operation and cost effectiveness, overcoming the critical scalability issues faced by existing solutions. Specifically, iCOPYWAVES is enabled by emerging PWEs, a recently proposed technology in wireless communications. Empowered by intelligent metasurfaces, PWEs transform the wave propagation phenomenon into a software-defined process. To this end, we leverage PWEs to: i) create, and then ii) selectively copy the scattered RF wavefront of an object from one location in space to another, where a machine learning module, accelerated by FPGAs, translates it to visual input for an XR headset using PWE-driven, RF imaging principles (XR-RF). This makes an XR system whose operation is bounded in the physical-layer and, hence, has the prospects for minimal end-to-end latency. For the case of large distances, RF-to-fiber/fiber-to-RF is employed to provide intermediate connectivity. The paper provides a tutorial on the iCOPYWAVES system architecture and workflow. Finally, a proof-of-concept implementation via simulations is provided, demonstrating the reconstruction of challenging objects in iCOPYWAVES-produced computer graphics.

Διαθέσιμα αρχεία

Υπηρεσίες

Στατιστικά