Institutional Repository [SANDBOX]
Technical University of Crete
EN  |  EL

Search

Browse

My Space

Overparametrized deep neural networks: Convergence and generalization properties

Polyzos Christos

Simple record


URIhttp://purl.tuc.gr/dl/dias/71452342-B134-4FF8-B2B5-06849C9E9FB4-
Identifierhttps://doi.org/10.26233/heallink.tuc.97293-
Languageen-
Extent4.5 megabytesen
Extent61 pagesen
TitleOverparametrized deep neural networks: Convergence and generalization properties en
TitleΥπερπαραμετροποιημένα νευρωνικά δίκτυα βαθείας μάθησης: Ιδιότητες σύγκλισης και γενίκευσηςel
CreatorPolyzos Christosen
CreatorΠολυζος Χρηστοςel
Contributor [Thesis Supervisor]Liavas Athanasiosen
Contributor [Thesis Supervisor]Λιαβας Αθανασιοςel
Contributor [Committee Member]Karystinos Georgiosen
Contributor [Committee Member]Καρυστινος Γεωργιοςel
Contributor [Committee Member]Zervakis Michailen
Contributor [Committee Member]Ζερβακης Μιχαηλel
PublisherΠολυτεχνείο Κρήτηςel
PublisherTechnical University of Creteen
Academic UnitTechnical University of Crete::School of Electrical and Computer Engineeringen
Academic UnitΠολυτεχνείο Κρήτης::Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστώνel
Content SummaryIn this thesis, we consider deep neural networks for Machine Learning. We depict neural networks as weighted directed graphs and we represent them as parametric functions that receive an input and compute an output, or prediction, given some fixed parameters, the weights and the biases. The quintessence of a neural network is the feed-forward model, in which the underlying graph does not contain cycles (acyclic graph) and the parametric function is defined in a compositional, or hierarchical, way. Throughout our presentation, we focus on a supervised learning setting, where our neural network model, or learner, has access to a training set that contains examples of how pairs of input-output data are related. In other words, supervised learning amounts to learning from examples. Given a training set, depending whether the outputs have real or categorical values, we consider regression and logistic regression. For each setting, we provide the basic statistical framework and construct a loss function known as the empirical risk. We train our neural network by minimizing the empirical risk w.r.t. its parameters by using gradient-based optimization methods. The gradient of the loss function is computed via the back-propagation algorithm. We showcase the convergence and generalization properties of different algorithms (deep neural network models and optimization methods) using real-world data.en
Type of ItemΔιπλωματική Εργασίαel
Type of ItemDiploma Worken
Licensehttp://creativecommons.org/licenses/by/4.0/en
Date of Item2023-09-05-
Date of Publication2023-
SubjectOverparameterizationen
SubjectMachine learningen
SubjectGeneralizationen
SubjectDeep neural networksen
SubjectDeep learningen
SubjectConvergenceen
Bibliographic CitationChristos Polyzos, "Overparametrized deep neural networks: Convergence and generalization properties", Diploma Work, School of Electrical and Computer Engineering, Technical University of Crete, Chania, Greece, 2023en
Bibliographic CitationΧρήστος Πολύζος, "Υπερπαραμετροποιημένα νευρωνικά δίκτυα βαθείας μάθησης: Ιδιότητες σύγκλισης και γενίκευσης", Διπλωματική Εργασία, Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών, Πολυτεχνείο Κρήτης, Χανιά, Ελλάς, 2023el

Available Files

Services

Statistics