URI | http://purl.tuc.gr/dl/dias/4515EAC3-A012-49E4-9D7A-4D2F0C81D639 | - |
Αναγνωριστικό | https://doi.org/10.1140/epjqt/s40507-022-00135-0 | - |
Αναγνωριστικό | https://epjquantumtechnology.springeropen.com/articles/10.1140/epjqt/s40507-022-00135-0 | - |
Γλώσσα | en | - |
Μέγεθος | 23 pages | en |
Τίτλος | Fock state-enhanced expressivity of quantum machine learning models | en |
Δημιουργός | Gan Beng Yee | en |
Δημιουργός | Leykam Daniel | en |
Δημιουργός | Angelakis Dimitrios | en |
Δημιουργός | Αγγελακης Δημητριος | el |
Εκδότης | Springer | en |
Περίληψη | The data-embedding process is one of the bottlenecks of quantum machine learning, potentially negating any quantum speedups. In light of this, more effective
data-encoding strategies are necessary. We propose a photonic-based bosonic
data-encoding scheme that embeds classical data points using fewer encoding layers and circumventing the need for nonlinear optical components by mapping the data points into the high-dimensional Fock space. The expressive power of the circuit can be controlled via the number of input photons. Our work sheds some light on the unique advantages offered by quantum photonics on the expressive power of quantum machine learning models. By leveraging the photon-number dependent expressive power, we propose three different noisy intermediate-scale
quantum-compatible binary classification methods with different scaling of required
resources suitable for different supervised classification tasks. | en |
Τύπος | Peer-Reviewed Journal Publication | en |
Τύπος | Δημοσίευση σε Περιοδικό με Κριτές | el |
Άδεια Χρήσης | http://creativecommons.org/licenses/by/4.0/ | en |
Ημερομηνία | 2023-07-19 | - |
Ημερομηνία Δημοσίευσης | 2022 | - |
Θεματική Κατηγορία | Quantum physics | en |
Θεματική Κατηγορία | Machine learning | en |
Θεματική Κατηγορία | Quantum photonics | en |
Βιβλιογραφική Αναφορά | B. Y. Gan, D. Leykam, and D. G. Angelakis, “Fock state-enhanced expressivity of quantum machine learning models,” EPJ Quantum Technol., vol. 9, no. 1, June 2022, doi: 10.1140/epjqt/s40507-022-00135-0. | en |