URI | http://purl.tuc.gr/dl/dias/7E9617F7-A334-47FE-AD9B-819164C9894D | - |
Identifier | https://doi.org/10.1145/3444757.3485101 | - |
Identifier | https://dl.acm.org/doi/10.1145/3444757.3485101 | - |
Language | en | - |
Extent | 5 pages | en |
Title | Data-driven decision support for autism diagnosis using machine learning | en |
Creator | Batsakis Sotirios | en |
Creator | Μπατσακης Σωτηριος | el |
Creator | Adamou Marios | en |
Creator | Tachmazidis Ilias | en |
Creator | Antoniou, Grigoris | en |
Creator | Kehagias Thanasis | en |
Publisher | Association for Computing Machinery (ACM) | en |
Content Summary | This paper describes work in progress about using AI technologies to support diagnostic decision making. In particular, we analyse clinical data of past cases to develop a data-driven prediction model for future cases. To do so, we use a versatile AutoML platform that applies a multitude of machine learning algorithms and their configurations. Our results show initial promise, but also point to limitations of currently available data, opening up avenues for further research. | en |
Type of Item | Δημοσίευση σε Συνέδριο | el |
Type of Item | Conference Publication | en |
License | http://creativecommons.org/licenses/by/4.0/ | en |
Date of Item | 2023-06-02 | - |
Date of Publication | 2021 | - |
Subject | Autism | en |
Subject | Clinical decision support | en |
Bibliographic Citation | S. Batsakis, M. Adamou, I. Tachmazidis, G. Antoniou and T. Kehagias, “Data-driven decision support for autism diagnosis using machine learning,” in Proceedings of the 13th International Conference on Management of Digital EcoSystems (MEDES 2021), virtual event, 2021, pp. 30–34, doi: 10.1145/3444757.3485101. | en |