| URI | http://purl.tuc.gr/dl/dias/9CB079A3-6AEB-49C4-8B09-FA578377E764 | - |
| Identifier | https://ieeexplore.ieee.org/document/9571235 | - |
| Language | en | - |
| Extent | 2 pages | en |
| Title | Fock state-enhanced expressivity of quantum machine learning models | en |
| Creator | Yee Gan Beng | en |
| Creator | Leykam Daniel | en |
| Creator | Angelakis Dimitrios | en |
| Creator | Αγγελακης Δημητριος | el |
| Publisher | Institute of Electrical and Electronics Engineers | en |
| Content Summary | We propose quantum classifiers based on encoding classical data onto Fock states using tunable beam-splitter meshes, similar to the boson sampling architecture. We show that higher photon numbers enhance the expressive power of the circuit. | en |
| Type of Item | Σύντομη Δημοσίευση σε Συνέδριο | el |
| Type of Item | Conference Short Paper | en |
| License | http://creativecommons.org/licenses/by/4.0/ | en |
| Date of Item | 2023-05-29 | - |
| Date of Publication | 2021 | - |
| Subject | Machine learning | en |
| Subject | Laser modes | en |
| Subject | Encoding | en |
| Subject | Integrated circuit modeling | en |
| Subject | Electrooptical waveguides | en |
| Subject | Photonics | en |
| Bibliographic Citation | G. B. Yee, D. Leykam and D. G. Angelakis, "Fock state-enhanced expressivity of quantum machine learning models," presented at the 2021 Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, USA, 2021. | en |