Institutional Repository [SANDBOX]
Technical University of Crete
EN  |  EL

Search

Browse

My Space

Assessment metrics for clustering algorithms

Angelopoulos Vasileios

Simple record


URIhttp://purl.tuc.gr/dl/dias/54E36216-1C8A-41C7-9848-DF38C838B0F4-
Identifierhttps://doi.org/10.26233/heallink.tuc.95986-
Languageen-
Extent70 pagesel
Extent3,7 megabytesen
TitleAssessment metrics for clustering algorithmsen
CreatorAngelopoulos Vasileiosen
CreatorΑγγελοπουλος Βασιλειοςel
Contributor [Thesis Supervisor]Matsatsinis Nikolaosen
Contributor [Thesis Supervisor]Ματσατσινης Νικολαοςel
Contributor [Committee Member]Tsafarakis Steliosen
Contributor [Committee Member]Τσαφαρακης Στελιοςel
Contributor [Committee Member]Grigoroudis Evangelosen
Contributor [Committee Member]Γρηγορουδης Ευαγγελοςel
PublisherΠολυτεχνείο Κρήτηςel
PublisherTechnical University of Creteen
Academic UnitΠολυτεχνείο Κρήτης::Σχολή Μηχανικών Παραγωγής και Διοίκησηςel
DescriptionMaster Thesis, Master of Technology and Innovation Managementen
Content SummaryIn the first part of the Thesis, the theoretical background will be provided for Artificial Intelligence, Machine Learning, Supervised and Unsupervised Learning and Clustering in order to provide the basis for understanding the next chapters. In the second chapter, the theoretical and mathematical background is provided for each clustering algorithm that will be implemented. In the third chapter of the Thesis the different clustering assessment metrics are discussed and their mathematical background is presented. In the fourth chapter the basic steps of the implementation that will be carried out in order to provide the necessary outputs will be described. The intended output/result of the Thesis is the development of a software script in Python capable to take different datasets as an input, implement different clustering methods and export the clustering performance metrics. The correct operation of the developed script is shown in the final chapter where an example dataset is used to showcase the capabilities of the script by presenting the results/outputs of the script along with commentary. A manual covering the basic elements of the script can be found in the same chapter.en
Type of ItemΜεταπτυχιακή Διατριβήel
Type of ItemMaster Thesisen
Licensehttp://creativecommons.org/licenses/by/4.0/en
Date of Item2023-05-25-
Date of Publication2023-
SubjectClusteringen
SubjectMachine learningen
Bibliographic CitationΒασίλειος Αγγελόπουλος, "Assessment metrics for clustering algorithms", Μεταπτυχιακή Διατριβή, Σχολή Μηχανικών Παραγωγής και Διοίκησης, Πολυτεχνείο Κρήτης, Χανιά, Ελλάς, 2023el
Bibliographic CitationVasileios Angelopoulos, "Assessment metrics for clustering algorithms", Master Thesis, School of Production Engineering and Management, Technical University of Crete, Chania, Greece, 2023el

Available Files

Services

Statistics