This thesis reviews the literature of the mechanical behaviour of metal particle-reinforced ceramics. The elastic properties (stiffness) and the fracture mechanics and ultimate properties of these materials (strength and toughness) are reviewed. Available experimental data are compared with models that have been developed to predict the elasticity modulus of the composite materials. Reinforcing ceramics with ductile metallic particles is found to result in composites that are less susceptible to brittle fracture caused by a propagating crack. The reinforcing effect is found to be accomplished by the activation of various toughening mechanisms in the material that are analysed and discussed. The augmented mechanical properties (strength and fracture toughness) for these ceramic matrix composites are evaluated in the present thesis.