Σήμερα ζούμε σε μια κοινωνία που βασίζεται στην τεχνολογία. Όλα όσα βλέπουμε γύρω μας έχουν γίνει ολοένα και πιο εξελιγμένα με την προσθήκη έξυπνων τηλεφώνων, έξυπνων αυτοκινήτων και ίσως ακόμη και έξυπνων ρούχων. Πολλές από αυτές τις συσκευές απαιτούν την απομακρυσμένη χρήση του παγκόσμιου ιστού για να λειτουργήσουν σωστά. Το γεγονός αυτό, σε συνδυασμό με τον συνεχώς αυξανόμενο πληθυσμό στις κεντρικές περιοχές διαβίωσης, δημιουργεί σοβαρά προβλήματα στους παρόχους υπηρεσιών κινητής τηλεφωνίας. Οι ξαφνικές εκρήξεις ζήτησης της υπηρεσίας τους μπορεί να προκαλέσουν συμφόρηση στην υποδομή δικτύου, με αποτέλεσμα προβλήματα απόδοσης στις κεραίες κινητής τηλεφωνίας. Μια ενδιαφέρουσα λύση για αυτό το πρόβλημα είναι η πρόβλεψη πότε και πού θα συμβούν αυτές οι πτώσεις απόδοσης και η εκ νέου βαθμονόμηση των παραμέτρων του δικτύου, αποφεύγοντας αποτελεσματικά την καταστροφή. Σε αυτή την εργασία προτείνω έναν αλγόριθμο νευρωνικού δικτύου που θα χειριστεί την πρόβλεψη αυτών των πτώσεων απόδοσης, αναφερόμενος σε αυτά ως hotspot. Για την επίτευξη αυτού του στόχου πρόκειται να συνεργαστώ με την εταιρεία Telefonica, η οποία θα παρέχει βασικές πληροφορίες που συλλέγονται από τις κεραίες των δικτύων της, δίνοντας επίσης και σημαντικές πληροφορίες για το τελικό προϊόν. Χρησιμοποιώντας έναν συνδυασμό Gated Recurrent Units και Graph Convolution Networks, το σχέδιο είναι να αποτυπωθούν οι χωρικές και χρονικές εξαρτήσεις που υπάρχουν στη συμπεριφορά των δικτύων, προβλέποντας αποτελεσματικά τις περισσότερες από τις πραγματικές πτώσεις απόδοσης σε μεγάλους ορίζοντες πρόβλεψης. Το επίκεντρο αυτής της εργασίας είναι να έχουμε ακριβείς προβλέψεις για όσο το δυνατόν περισσότερα hotspot και ταυτόχρονα να υποστηρίζουμε έναν τεράστιο αριθμό κεραιών στον υπολογισμό.