Ιδρυματικό Αποθετήριο [SANDBOX]
Πολυτεχνείο Κρήτης
EN  |  EL

Αναζήτηση

Πλοήγηση

Ο Χώρος μου

Ανάπτυξη και ανάλυση δικτύων βιολογικής αλληλεπίδρασης

Tsakaneli Stavroula

Πλήρης Εγγραφή


URI: http://purl.tuc.gr/dl/dias/D5A68C70-18DB-48BD-8990-4863C9295AE4
Έτος 2022
Τύπος Μεταπτυχιακή Διατριβή
Άδεια Χρήσης
Λεπτομέρειες
Βιβλιογραφική Αναφορά Σταυρούλα Τσακανέλη, "Ανάπτυξη και ανάλυση δικτύων βιολογικής αλληλεπίδρασης", Μεταπτυχιακή Διατριβή, Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών, Πολυτεχνείο Κρήτης, Χανιά, Ελλάς, 2022 https://doi.org/10.26233/heallink.tuc.94367
Εμφανίζεται στις Συλλογές

Περίληψη

Η σκλήρυνση κατά πλάκας (ΣΚΠ) είναι μια χρόνια φλεγμονώδης απομυελινωτική νόσος που επηρεάζει περίπου 2,8 εκατομμύρια άτομα παγκοσμίως. Ενώ επί του παρόντος δεν υπάρχει θεραπεία για αυτή τη νευροεκφυλιστική νόσο, η σκλήρυνση κατά πλάκας έχει γίνει μια εξαιρετικά διαχειρίσιμη ασθένεια μέσω επιλογών θεραπείας όπως φάρμακα που τροποποιούν τη νόσο, που μπορούν να βοηθήσουν στον έλεγχο των συμπτωμάτων και στην επιβράδυνση της εξέλιξης της νόσου. Μεταξύ αυτών, η θεραπεία με ιντερφερόνη βήτα (IFNβ) είναι μια θεραπεία πρώτης γραμμής για τη σκλήρυνση κατά πλάκας, αλλά έχει αποδειχθεί μόνο μερικώς αποτελεσματική. Πληροφορίες από εκτεταμένες βάσεις δεδομένων για μεγάλες ομάδες ασθενών με σκλήρυνση κατά πλάκας δείχνουν ότι η φυσική ιστορία της ΣΚΠ εξελίσσεται σε δύο στάδια: (i) στην εστιακή φλεγμονώδη διαδικασία με εξάρσεις και ii) στην αναπηρία που εξελίσσεται ανεξάρτητα από την εστιακή φλεγμονή (βλάβη ή υποτροπή ). Επομένως, είναι σημαντικό να εντοπιστούν βιοδείκτες που βοηθούν στην έγκαιρη αναγνώριση της νόσου καθώς και των ανταποκρινόμενων στην IFNβ. Ένας δεύτερος στόχος της μελέτης μας ήταν να εντοπίσουμε βιοδείκτες που βοηθούν στην πρώιμη αναγνώριση σταδίων ΣΚΠ, δηλαδή της υποτροπιάζουσας-διαλείπουσας μορφής (RR-MS), της δευτερογενούς προϊούσας φάσης (SP-MS) και της πρωτοπαθούς προϊούσας σκλήρυνσης κατά πλάκας (PP-MS). Μοτίβα συνέκφρασης γονιδίων για διάφορους φαινοτύπους μπορούν να αποκαλυφθούν με τη βοήθεια μικροσυστοιχιών, αλλά η ποικιλία και η ετερογένεια της νόσου λειτουργούν ως περιορισμοί για τη χρησιμότητα των προφίλ γονιδιακής έκφρασης. Επιπλέον, οι διαφορετικές πλατφόρμες μικροσυστοιχιών που χρησιμοποιούνται, καθώς και τα διαφορετικά πειραματικά πρωτόκολλα που ακολουθούνται, είναι γεγονότα που καθιστούν δύσκολο τον συνδυασμό συνόλων δεδομένων γονιδιακής έκφρασης από ετερογενείς πλατφόρμες και διαφορετικές μελέτες. Ένας άλλος περιορισμός είναι η μεγάλη ανισορροπία μεταξύ του τεράστιου αριθμού μεταγραφών και γονιδίων (δεκάδες χιλιάδες) και του σχετικά μικρού αριθμού διαθέσιμων περιπτώσεων δειγμάτων (εκατοντάδες). Επιπλέον, είναι σημαντικό να συνδυαστούν οι προσεγγίσεις επιλογής χαρακτηριστικών και η «βιολογική εγκυρότητα» των βιοδεικτών γονιδίου που προέκυψαν. Έτσι, ο σκοπός μας είναι όχι μόνο να επικεντρωθούμε σε υψηλά διαφοροποιημένα γονίδια, αλλά να συνδυάσουμε διαφορετικές προσεγγίσεις για να φτάσουμε σε μια υπογραφή αφού εξετάσουμε τις σχέσεις μεταξύ των γονιδιωματικών υπογραφών και να συναγάγουμε υποδίκτυα μεγαλύτερης σημασίας σε σχέση με τη Σκλήρυνση κατά Πλάκας, την εξέλιξη της νόσου και τη μελλοντική θεραπεία.Σε αυτή τη μελέτη, με βάση τα προφίλ γονιδιακής έκφρασης από ασθενείς που δεν υποβλήθηκαν σε θεραπεία με ιντερφερόνη και υγιή άτομα από δημόσια διαθέσιμα σύνολα δεδομένων, πραγματοποιήσαμε ανάλυση διαφορικής έκφρασης και συσχέτιση δικτύου Pigengene (σταθμισμένη ανάλυση δικτύου συσχέτισης (WGCNA) και μοντελοποίηση δικτύων Bayes) έτσι ώστε να κατασκευάσουμε μια δίκτυο αλληλεπίδρασης πρωτεΐνης-πρωτεΐνης υψηλής εμπιστοσύνης (PPI). Στη συνέχεια, με στόχο την εύρεση των πιο σημαντικών μονάδων ομαδοποίησης και σημαντικών γονιδίων, εφαρμόσαμε διάφορες μεθόδους τοπολογικής ανάλυσης (cytoHubba) ακολουθούμενες από τον αλγόριθμο ομαδοποίησης MCODE. Η προσέγγισή μας είχε ως αποτέλεσμα υψηλά συνδεδεμένα γονίδια (hub) που παράγουν τέσσερις εξαιρετικά αξιόπιστες υπογραφές γονιδίου κόμβου με υψηλή απόδοση ταξινόμησης. Τέλος, προσεγγίσαμε το θέμα της επαναχρησιμοποίησης φαρμάκων εξετάζοντας τις σχέσεις φαρμάκου-γονιδίου μέσω διαφορετικών βάσεων δεδομένων.

Διαθέσιμα αρχεία

Υπηρεσίες

Στατιστικά