Institutional Repository [SANDBOX]
Technical University of Crete
EN  |  EL

Search

Browse

My Space

Regionalizing root-zone soil moisture estimates from ESA CCI Soil Water Index using machine learning and information on soil, vegetation, and climate

Gryllakis Emmanouil, Koutroulis Aristeidis, Alexakis Dimitrios D., Polykretis Christos, Daliakopoulos Ioannis

Simple record


URIhttp://purl.tuc.gr/dl/dias/61BC4798-8F38-4042-86D8-5EFEF7A6E563-
Identifierhttps://doi.org/10.1029/2020WR029249-
Identifierhttps://agupubs.onlinelibrary.wiley.com/doi/10.1029/2020WR029249-
Languageen-
Extent22 pagesen
TitleRegionalizing root-zone soil moisture estimates from ESA CCI Soil Water Index using machine learning and information on soil, vegetation, and climateen
CreatorGryllakis Emmanouilen
CreatorΓρυλλακης Εμμανουηλel
CreatorKoutroulis Aristeidisen
CreatorΚουτρουλης Αριστειδηςel
CreatorAlexakis Dimitrios D.en
CreatorPolykretis Christosen
CreatorDaliakopoulos Ioannisen
CreatorΔαλιακοπουλος Ιωαννηςel
PublisherAmerican Geophysical Unionen
Content SummaryThe European Space Agency (ESA), through the Climate Change Initiative (CCI), is currently providing nearly 4 decades of global satellite-observed, fully homogenized soil moisture data for the uppermost 2–5 cm of the soil layer. These data are valuable as they comprise one of the most complete remotely sensed soil moisture data sets available in time and space. One main limitation of the ESA CCI soil moisture data set is the limited soil depth at which the moisture content is represented. In order to address this critical gap, we (a) estimate and calibrate the Soil Water Index using ESA CCI soil moisture against in situ observations from the International Soil Moisture Network and then (b) leverage machine learning techniques and physical soil, climate, and vegetation descriptors at a global scale to regionalize the calibration. We use this calibration to assess the root-zone soil moisture for the period 2001–2018. The results are compared against the European Centre for Medium-Range Weather Forecasts, ERA5 Land, and the Famine Early Warning Systems Network Land Data Assimilation System reanalyses soil moisture data sets, showing a good agreement, mainly over mid latitudes. This work contributes to the exploitation of ESA CCI soil moisture data, while the produced data can support large-scale soil moisture-related studies.en
Type of ItemPeer-Reviewed Journal Publicationen
Type of ItemΔημοσίευση σε Περιοδικό με Κριτέςel
Licensehttp://creativecommons.org/licenses/by/4.0/en
Date of Item2022-11-29-
Date of Publication2021-
SubjectMachine learningen
SubjectCalibration of the Soil Water Indexen
SubjectSoil, climate, and vegetation descriptorsen
SubjectESA CCI Soil Water Indexen
SubjectEuropean Space Agency (ESA)en
SubjectClimate Change Initiative (CCI)en
Bibliographic CitationM. G. Grillakis, A. G. Koutroulis, D. D. Alexakis, C. Polykretis, and I. N. Daliakopoulos, “Regionalizing root-zone soil moisture estimates from ESA CCI Soil Water Index using machine learning and information on soil, vegetation, and climate,” Water Resour. Res., vol. 57, no. 5, May 2021, doi: 10.1029/2020WR029249.en

Services

Statistics