Ιδρυματικό Αποθετήριο [SANDBOX]
Πολυτεχνείο Κρήτης
EN  |  EL

Αναζήτηση

Πλοήγηση

Ο Χώρος μου

Spatiotemporal geostatistical analysis of precipitation combining ground and satellite observations

Varouchakis Emmanouil, Christopoulos Dionysios, Karatzas Georgios, Corzo Perez Gerald A., Diaz Vitali

Πλήρης Εγγραφή


URI: http://purl.tuc.gr/dl/dias/99BCFD49-0463-404A-9292-A74760F2D72E
Έτος 2021
Τύπος Δημοσίευση σε Περιοδικό με Κριτές
Άδεια Χρήσης
Λεπτομέρειες
Βιβλιογραφική Αναφορά E. A. Varouchakis, D. T. Hristopulos, G. P. Karatzas, G. A. Corzo Perez, and V. Diaz, “Spatiotemporal geostatistical analysis of precipitation combining ground and satellite observations,” Hydrol. Res., vol. 52, no. 3, pp. 804–820, June 2021, doi: 10.2166/nh.2021.160. https://doi.org/10.2166/nh.2021.160
Εμφανίζεται στις Συλλογές

Περίληψη

Precipitation data are useful for the management of water resources as well as flood and drought events. However, precipitation monitoring is sparse and often unreliable in regions with complicated geomorphology. Subsequently, the spatial variability of the precipitation distribution is frequently represented incorrectly. Satellite precipitation data provide an attractive supplement to ground observations. However, satellite data involve errors due to the complexity of the retrieval algorithms and/or the presence of obstacles that affect the infrared observation capability. This work presents a methodology that combines satellite and ground observations leading to improved spatiotemporal mapping and analysis of precipitation. The applied methodology is based on space–time regression kriging. The case study refers to the island of Crete, Greece, for the time period of 2010–2018. Precipitation data from 53 stations are used in combination with satellite images for the reference period. This work introduces an improved spatiotemporal approach for precipitation mapping.

Διαθέσιμα αρχεία

Υπηρεσίες

Στατιστικά