Institutional Repository [SANDBOX]
Technical University of Crete
EN  |  EL

Search

Browse

My Space

A decision support tool for optimising groundwater-level monitoring networks using an adaptive genetic algorithm

Parasyris Antonios, Spanoudaki Katerina, Varouchakis Emmanouil, Kampanis, Nikolaos A

Simple record


URIhttp://purl.tuc.gr/dl/dias/F41D0EFB-1CA3-4CA2-8D28-6AA2C4916272-
Identifierhttps://doi.org/10.2166/hydro.2021.045-
Identifierhttps://iwaponline.com/jh/article/23/5/1066/83242/A-decision-support-tool-for-optimising-groundwater-
Languageen-
Extent17 pagesen
TitleA decision support tool for optimising groundwater-level monitoring networks using an adaptive genetic algorithmen
CreatorParasyris Antoniosen
CreatorSpanoudaki Katerinaen
CreatorVarouchakis Emmanouilen
CreatorΒαρουχακης Εμμανουηλel
CreatorKampanis, Nikolaos Aen
PublisherIWA Publishingen
Content SummaryMapping of the spatial variability of sparse groundwater-level measurements is usually achieved by means of geostatistical methods. This work tackles the problem of deficient sampling of an aquifer, by employing an innovative integer adaptive genetic algorithm (iaGA) coupled with geostatistical modelling by means of ordinary kriging, to optimise the monitoring network. Fitness functions based on three different errors are used for removing a constant number of boreholes from the monitoring network. The developed methodology has been applied to the Mires basin in Crete, Greece. The methodological improvement proposed concerns the adaptive method for the GA, which affects the crossover–mutation fractions depending on the stall parameter, aiming at higher accuracy and faster convergence of the GA. The initial dataset consists of 70 monitoring boreholes and the applied methodology shows that as many as 40 boreholes can be removed, while still retaining an accurate mapping of groundwater levels. The proposed scenario for optimising the monitoring network consists of removing 30 boreholes, in which case the estimated uncertainty is considerably smaller. A sensitivity analysis is conducted to compare the performance of the standard GA with the proposed iaGA. The integrated methodology presented is easily replicable for other areas for efficient monitoring networks design.en
Type of ItemPeer-Reviewed Journal Publicationen
Type of ItemΔημοσίευση σε Περιοδικό με Κριτέςel
Licensehttp://creativecommons.org/licenses/by/4.0/en
Date of Item2022-10-21-
Date of Publication2021-
SubjectAdaptive genetic algorithmen
SubjectGeostatistical modellingen
SubjectGroundwater monitoring network optimisationen
SubjectKriging-based genetic algorithm optimisationen
Bibliographic CitationA. Parasyris, K. Spanoudaki, E. A. Varouchakis, and N. A. Kampanis, “A decision support tool for optimising groundwater-level monitoring networks using an adaptive genetic algorithm,” J. Hydroinf., vol. 23, no. 5, pp. 1066–1082, Sep. 2021, doi: 10.2166/hydro.2021.045.en

Available Files

Services

Statistics