Institutional Repository [SANDBOX]
Technical University of Crete
EN  |  EL

Search

Browse

My Space

Integrating a novel smart control system for outdoor lighting infrastructures in ports

Sifakis Nikolaos, Kalaitzakis Konstantinos, Tsoutsos Theocharis

Simple record


URIhttp://purl.tuc.gr/dl/dias/909D4F31-CD3F-4CC1-AF15-66B194B8F3A7-
Identifierhttps://doi.org/10.1016/j.enconman.2021.114684-
Identifierhttps://www.sciencedirect.com/science/article/pii/S0196890421008608-
Languageen-
Extent17 pagesen
TitleIntegrating a novel smart control system for outdoor lighting infrastructures in portsen
CreatorSifakis Nikolaosen
CreatorΣηφακης Νικολαοςel
CreatorKalaitzakis Konstantinosen
CreatorΚαλαϊτζακης Κωνσταντινοςel
CreatorTsoutsos Theocharisen
CreatorΤσουτσος Θεοχαρηςel
PublisherElsevieren
Content SummaryLighting is amongst the most energy-demanding ports’ operations due to the strict legislative illuminance limits ensuring the safety and the visual comfort of ports' end-users. Lighting exceeds 70% of a port's energy demand in most cases. In parallel, they should be harmonised during the energy transition. This research proposes a novel replicable typology of smart-controlling the outdoor lighting infrastructures in three stages: the reallocation and replacement of the obsolete luminaires, the integration of the daylight harvesting techniques, and the implementation of the occupational-based dimming strategy based on the actual data. A typical Mediterranean port was used as a testbed, the port of Rethymno. The innovative aspect of the proposed typology is that it improves two existing smart lighting control techniques and combines them to a complete typology that responds fast and accurately to any possible lighting conditions' alteration in each space distinctively. The system incorporates high replicability and applicability to a great variety of needs, technologies, and spaces. The energy wastes are diminished while the end-used visual comfort is significantly enhanced. The system's energy savings potential and impacts on the port's infrastructures are quantified, discussed and evaluated. The suggested tool leads to a 56.8% decrease in the port's lighting operations' annual energy demand, which may reach up to 90% in some months. The port’s environmental footprint is also reduced to half than the baseline levels. In conclusion, the investment is viable and feasible, leading to an investment paid back in less than ten years in some instances.en
Type of ItemPeer-Reviewed Journal Publicationen
Type of ItemΔημοσίευση σε Περιοδικό με Κριτέςel
Licensehttp://creativecommons.org/licenses/by/4.0/en
Date of Item2022-09-28-
Date of Publication2021-
SubjectLighting energy efficiencyen
SubjectSmart ports' outdoor lighting control systemen
SubjectDaylight harvestingen
SubjectClimate change mitigationen
SubjectNearly zero energy portsen
Bibliographic CitationN. Sifakis, K. Kalaitzakis, and T. Tsoutsos, “Integrating a novel smart control system for outdoor lighting infrastructures in ports,” Energy Convers. Manage., vol. 246, Oct. 2021, doi: 10.1016/j.enconman.2021.114684.en

Services

Statistics