Institutional Repository [SANDBOX]
Technical University of Crete
EN  |  EL

Search

Browse

My Space

Integrating a novel smart control system for outdoor lighting infrastructures in ports

Sifakis Nikolaos, Kalaitzakis Konstantinos, Tsoutsos Theocharis

Full record


URI: http://purl.tuc.gr/dl/dias/909D4F31-CD3F-4CC1-AF15-66B194B8F3A7
Year 2021
Type of Item Peer-Reviewed Journal Publication
License
Details
Bibliographic Citation N. Sifakis, K. Kalaitzakis, and T. Tsoutsos, “Integrating a novel smart control system for outdoor lighting infrastructures in ports,” Energy Convers. Manage., vol. 246, Oct. 2021, doi: 10.1016/j.enconman.2021.114684. https://doi.org/10.1016/j.enconman.2021.114684
Appears in Collections

Summary

Lighting is amongst the most energy-demanding ports’ operations due to the strict legislative illuminance limits ensuring the safety and the visual comfort of ports' end-users. Lighting exceeds 70% of a port's energy demand in most cases. In parallel, they should be harmonised during the energy transition. This research proposes a novel replicable typology of smart-controlling the outdoor lighting infrastructures in three stages: the reallocation and replacement of the obsolete luminaires, the integration of the daylight harvesting techniques, and the implementation of the occupational-based dimming strategy based on the actual data. A typical Mediterranean port was used as a testbed, the port of Rethymno. The innovative aspect of the proposed typology is that it improves two existing smart lighting control techniques and combines them to a complete typology that responds fast and accurately to any possible lighting conditions' alteration in each space distinctively. The system incorporates high replicability and applicability to a great variety of needs, technologies, and spaces. The energy wastes are diminished while the end-used visual comfort is significantly enhanced. The system's energy savings potential and impacts on the port's infrastructures are quantified, discussed and evaluated. The suggested tool leads to a 56.8% decrease in the port's lighting operations' annual energy demand, which may reach up to 90% in some months. The port’s environmental footprint is also reduced to half than the baseline levels. In conclusion, the investment is viable and feasible, leading to an investment paid back in less than ten years in some instances.

Services

Statistics