Institutional Repository [SANDBOX]
Technical University of Crete
EN  |  EL

Search

Browse

My Space

Bayesian active malware analysis

Sartea Riccardo, Chalkiadakis Georgios, Farinelli Alessandro, Murari Matteo

Simple record


URIhttp://purl.tuc.gr/dl/dias/C261F0BB-A07D-45B8-8B7F-7DFD52339A08-
Identifierhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85096654979&partnerID=40&md5=77bfe04749005b25eff5436afb3fe0dd-
Identifierwww.ifaamas.org/proceedings.html-
Identifier978-145037518-4-
Languageen-
Extent9 pagesen
TitleBayesian active malware analysisen
CreatorSartea Riccardoen
CreatorChalkiadakis Georgiosen
CreatorΧαλκιαδακης Γεωργιοςel
CreatorFarinelli Alessandroen
CreatorMurari Matteoen
PublisherInternational Foundation for Autonomous Agents and Multiagent Systems (IFAAMAS)en
Content SummaryWe propose a novel technique for Active Malware Analysis (AMA) formalized as a Bayesian game between an analyzer agent and a malware agent, focusing on the decision making strategy for the analyzer. In our model, the analyzer performs an action on the system to trigger the malware into showing a malicious behavior, i.e., by activating its payload. The formalization is built upon the link between malware families and the notion of types in Bayesian games. A key point is the design of the utility function, which reflects the amount of uncertainty on the type of the adversary after the execution of an analyzer action. This allows us to devise an algorithm to play the game with the aim of minimizing the entropy of the analyzer’s belief at every stage of the game in a myopic fashion. Empirical evaluation indicates that our approach results in a significant improvement both in terms of learning speed and classification score when compared to other state-of-the-art AMA techniques.en
Type of ItemΠλήρης Δημοσίευση σε Συνέδριοel
Type of ItemConference Full Paperen
Licensehttp://creativecommons.org/licenses/by/4.0/en
Date of Item2022-07-26-
Date of Publication2020-
SubjectMalwareen
SubjectAutonomous agentsen
SubjectMulti agent systemsen
SubjectDecision makingen
Bibliographic CitationR. Sartea, G. Chalkiadakis, A. Farinelli, and M. Murari, “Bayesian active malware analysis,” In Proc. of the 19th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2020), vol 2020, B. An, N. Yorke-Smith, A. El Fallah Seghrouchni, G. Sukthankar, Eds., USA: IFAAMAS, 2020, pp. 1206 - 1214.en

Services

Statistics