URI | http://purl.tuc.gr/dl/dias/7E60BF94-CFB4-416F-8E83-1D4DEDE33094 | - |
Identifier | https://doi.org/10.26233/heallink.tuc.92852 | - |
Language | el | - |
Extent | 82 σελίδες | el |
Extent | 2.7 megabytes | en |
Title | Διερεύνηση χρήσης αλγορίθμων μηχανικής μάθησης για πρόβλεψη λειτουργίας αντλιοστασίου
| el |
Title | Investigation of using machine learning algorithms for predicting the operation of a pumping station
| en |
Creator | Andreadakis Antonios | en |
Creator | Ανδρεαδακης Αντωνιος | el |
Contributor [Thesis Supervisor] | Stavroulakis Georgios | en |
Contributor [Thesis Supervisor] | Σταυρουλακης Γεωργιος | el |
Contributor [Committee Member] | Arampatzis Georgios | en |
Contributor [Committee Member] | Αραμπατζης Γεωργιος | el |
Contributor [Committee Member] | Marinaki Magdalini | en |
Contributor [Committee Member] | Μαρινακη Μαγδαληνη | el |
Publisher | Πολυτεχνείο Κρήτης | el |
Publisher | Technical University of Crete | en |
Academic Unit | Technical University of Crete::School of Production Engineering and Management | en |
Academic Unit | Πολυτεχνείο Κρήτης::Σχολή Μηχανικών Παραγωγής και Διοίκησης | el |
Description | Διπλωματική εργασία που υποβλήθηκε στη σχολή ΜΠΔ του Πολυτεχνείου Κρήτης για την πλήρωση προϋποθέσεων λήψης πτυχίου | el |
Content Summary | Στην παρούσα εργασία διερευνήθηκε η αποτελεσματικότητα χρήσης αλγορίθμων μηχανικής μάθησης για την πρόβλεψη της πίεσης, παροχής και συνολικής κατανάλωσης ενέργειας σε ένα υδραυλικό δίκτυο. Συγκεκριμένα, το δίκτυο που χρησιμοποιήθηκε ήταν ένα αντλιοστάσιο νερού με δύο ταυτόσημες αντλίες το οποίο καταθλίβει σε δεξαμενή υψηλότερης στάθμης. Μέσω κατάλληλου χειρισμού των βανών στο δίκτυο σωληνώσεων, οι αντλίες μπορούν να λειτουργήσουν ως μεμονωμένες, σε σειρά ή παράλληλα. Με χρήση του αξιόπιστου προγράμματος αριθμητικής προσομοίωσης υδραυλικών δικτύων EPANET και για πολλαπλά τυχαία σενάρια θέσης βανών και ύψους στάθμης της δεξαμενής κατάθλιψης, υπολογίστηκαν οι τιμές πίεσης στους κόμβους, της παροχής στις σωληνώσεις και της συνολικής κατανάλωσης ενέργειας. Οι τιμές αυτές χρησιμοποιήθηκαν για την εκπαίδευση πολλαπλών μοντέλων μηχανικής μάθησης - τύπου Regression - στο πρόγραμμα MATLAB. Το μοντέλο που εμφάνιζε την μικρότερη απόκλιση της μέσης τετραγωνικής τιμής (RMS) χρησιμοποιήθηκε έπειτα για την πρόβλεψη των τιμών πίεσης, παροχής και ενέργειας για 16 προκαθορισμένα σενάρια θέσης βανών και στάθμης δεξαμενής. Μετά από την σύγκριση των προβλεπόμενων τιμών αυτών με τις αντίστοιχες προϋπολογισμένες τιμές από το EPANET, αναδείχθηκε η επιτυχής δυνατότητα χρήσης της μηχανικής μάθησης για την πρόβλεψη λειτουργίας του συγκεκριμένου αντλιοστασίου. | el |
Content Summary | In this thesis, the effectiveness of using machine learning algorithms to predict the pressure, flow rate and total energy consumption in a hydraulic network was investigated. Specifically, the network used was a water pumping station with two identical pumps which depresses into a higher level reservoir. Through appropriate manipulation of the valves in the piping network, the pumps can be operated as individual pumps, in series or in parallel. Using the reliable numerical simulation program for hydraulic networks EPANET and for multiple random scenarios of valve position and depression tank level, the values of pressure at the nodes, flow rate in the piping and total energy consumption were calculated. These values were used to train multiple machine learning models - of the regression type - in MATLAB. The model showing the smallest deviation of the root mean square (RMS) was then used to predict the pressure, flow and energy values for 16 predefined scenarios of vane position and reservoir levels. After comparing these predicted values with the corresponding precalculated values from EPANET, the successful feasibility of using machine learning to predict the operation of this pumping station was demonstrated. | en |
Type of Item | Διπλωματική Εργασία | el |
Type of Item | Diploma Work | en |
License | http://creativecommons.org/licenses/by/4.0/ | en |
Date of Item | 2022-07-22 | - |
Date of Publication | 2022 | - |
Subject | Πρόβλεψη | el |
Subject | Μοντελοποίηση αντλιοστασίου | el |
Subject | Μηχανική μάθηση | el |
Bibliographic Citation | Αντώνιος Ανδρεαδάκης, "Διερεύνηση χρήσης αλγορίθμων μηχανικής μάθησης για πρόβλεψη λειτουργίας αντλιοστασίου", Διπλωματική Εργασία, Σχολή Μηχανικών Παραγωγής και Διοίκησης, Πολυτεχνείο Κρήτης, Χανιά, Ελλάς, 2022 | el |
Bibliographic Citation | Antonios Andreadakis, "Investigation of using machine learning algorithms for predicting the operation of a pumping station", Diploma Work, School of Production Engineering and Management, Technical University of Crete, Chania, Greece, 2022 | en |