Ιδρυματικό Αποθετήριο [SANDBOX]
Πολυτεχνείο Κρήτης
EN  |  EL

Αναζήτηση

Πλοήγηση

Ο Χώρος μου

Machine learning for clothing manufacture as a mean to respond quicker and better to the demands of clothing brands: a Greek case study

Papachristou Evrydiki, Chrysopoulos Antonios, Bilalis Nikolaos

Απλή Εγγραφή


URIhttp://purl.tuc.gr/dl/dias/033D9E6F-3BF5-45E1-A03D-51823F083F16-
Αναγνωριστικόhttps://doi.org/10.1007/s00170-020-06157-1-
Αναγνωριστικόhttps://link.springer.com/article/10.1007/s00170-020-06157-1-
Γλώσσαen-
Μέγεθος12 pagesen
ΤίτλοςMachine learning for clothing manufacture as a mean to respond quicker and better to the demands of clothing brands: a Greek case studyen
ΔημιουργόςPapachristou Evrydikien
ΔημιουργόςΠαπαχρηστου Ευρυδικηel
ΔημιουργόςChrysopoulos Antoniosen
ΔημιουργόςBilalis Nikolaosen
ΔημιουργόςΜπιλαλης Νικολαοςel
ΕκδότηςSpringeren
ΠερίληψηIn the clothing industry, design, development and procurement teams have been affected more than any other industry and are constantly being under pressure to present more products with fewer resources in a shorter time. The diversity of garment designs created as new products is not found in any other industry and is almost independent of the size of the business. The proposed research is being applied to a Greek clothing manufacturing company with operations in two different countries and a portfolio of diverse brands and moves in two dimensions: The first dimension concerns the perfect transformation of the product design field into a field of action planning that can be supported by artificial intelligence, providing timely and valid information to the designer drawing information from a wider range of sources than today’s method. The second dimension of the research concerns the design and implementation of an intelligent and semi-autonomous decision support system for everyone involved in the sample room. This system utilizes various machine learning techniques in order to become a versatile, robust and useful “assistant”: multiple clustering and classification models are utilized for grouping and combining similar/relevant products, Computer Vision state-of-the-art algorithms are extracting meaningful attributes from images and, finally, a reinforcement learning system is used to evolve the existing models based on user’s preferences.en
ΤύποςPeer-Reviewed Journal Publicationen
ΤύποςΔημοσίευση σε Περιοδικό με Κριτέςel
Άδεια Χρήσηςhttp://creativecommons.org/licenses/by/4.0/en
Ημερομηνία2022-04-26-
Ημερομηνία Δημοσίευσης2021-
Θεματική ΚατηγορίαClothing manufactureen
Θεματική ΚατηγορίαMachine learningen
Θεματική ΚατηγορίαIntelligent decision support systemen
Θεματική ΚατηγορίαFast fashion and AIen
Βιβλιογραφική ΑναφοράE. Papachristou, A. Chrysopoulos, and N. Bilalis, “Machine learning for clothing manufacture as a mean to respond quicker and better to the demands of clothing brands: a Greek case study,” Int. J. Adv. Manuf. Technol., vol. 115, no. 3, pp. 691– 702, July 2021, doi: 10.1007/s00170-020-06157-1.en

Υπηρεσίες

Στατιστικά