Institutional Repository [SANDBOX]
Technical University of Crete
EN  |  EL

Search

Browse

My Space

Random fields for spatial data modeling: a primer for scientists and engineers

Christopoulos Dionysios

Simple record


URIhttp://purl.tuc.gr/dl/dias/C125E5F5-07EA-4310-AC61-ABE669D81660-
Identifierhttps://doi.org/10.1007/978-94-024-1918-4-
Identifierhttps://link.springer.com/book/10.1007/978-94-024-1918-4-
Languageen-
Extent867 pagesen
TitleRandom fields for spatial data modeling: a primer for scientists and engineersen
CreatorChristopoulos Dionysiosen
CreatorΧριστοπουλος Διονυσιοςel
PublisherSpringer Natureen
Content SummaryThis book provides an inter-disciplinary introduction to the theory of random fields and its applications. Spatial models and spatial data analysis are integral parts of many scientific and engineering disciplines. Random fields provide a general theoretical framework for the development of spatial models and their applications in data analysis. The contents of the book include topics from classical statistics and random field theory (regression models, Gaussian random fields, stationarity, correlation functions) spatial statistics (variogram estimation, model inference, kriging-based prediction) and statistical physics (fractals, Ising model, simulated annealing, maximum entropy, functional integral representations, perturbation and variational methods). The book also explores links between random fields, Gaussian processes and neural networks used in machine learning. Connections with applied mathematics are highlighted by means of models based on stochastic partial differential equations. An interlude on autoregressive time series provides useful lower-dimensional analogies and a connection with the classical linear harmonic oscillator. Other chapters focus on non-Gaussian random fields and stochastic simulation methods. The book also presents results based on the author’s research on Spartan random fields that were inspired by statistical field theories originating in physics. The equivalence of the one-dimensional Spartan random field model with the classical, linear, damped harmonic oscillator driven by white noise is highlighted. Ideas with potentially significant computational gains for the processing of big spatial data are presented and discussed. The final chapter concludes with a description of the Karhunen-Loève expansion of the Spartan model. The book will appeal to engineers, physicists, and geoscientists whose research involves spatial models or spatial data analysis. Anyone with background in probability and statistics can read at least parts of the book. Some chapters will be easier to understand by readers familiar with differential equations and Fourier transforms.en
Type of ItemΒιβλίοel
Type of ItemBooken
Licensehttp://creativecommons.org/licenses/by/4.0/en
Date of Item2022-07-27-
Date of Publication2020-
SubjectConditional simulationen
SubjectGaussian statistical field theoryen
SubjectLocal interaction modelsen
SubjectRandom fieldsen
SubjectSpatial analysis of natural systemsen
SubjectSpatial data modellingen
SubjectSpatial random field theoryen
SubjectSpatial statisticsen
SubjectStochastics differential equations data-driven science, modeling and theory buildingen
Bibliographic CitationD. T. Hristopoulos, “Random fields for spatial data modeling: a primer for scientists and engineers,” Advances in Geographic Information Science, Dordrecht, The Netherlands: Springer Nature, 2020, doi: 10.1007/978-94-024-1918-4.en
Book Edition1-
Book SeriesAdvances in Geographic Information Scienceen

Services

Statistics