URI | http://purl.tuc.gr/dl/dias/6CC0A94D-D210-4E39-846F-30F6D8A3011D | - |
Αναγνωριστικό | https://doi.org/10.3390/DRONES4040079 | - |
Αναγνωριστικό | https://www.mdpi.com/2504-446X/4/4/79/htm | - |
Γλώσσα | en | - |
Μέγεθος | 24 pages | en |
Μέγεθος | 5,12 megabytes | en |
Τίτλος | Aerial and ground robot collaboration for autonomous mapping in search and rescue missions | en |
Δημιουργός | Chatziparaschis Dimitrios | en |
Δημιουργός | Χατζηπαρασχης Δημητριος | el |
Δημιουργός | Lagoudakis Michail | en |
Δημιουργός | Λαγουδακης Μιχαηλ | el |
Δημιουργός | Partsinevelos Panagiotis | en |
Δημιουργός | Παρτσινεβελος Παναγιωτης | el |
Εκδότης | MDPI | en |
Περίληψη | Humanitarian Crisis scenarios typically require immediate rescue intervention. In many cases, the conditions at a scene may be prohibitive for human rescuers to provide instant aid, because of hazardous, unexpected, and human threatening situations. These scenarios are ideal for autonomous mobile robot systems to assist in searching and even rescuing individuals. In this study, we present a synchronous ground-aerial robot collaboration approach, under which an Unmanned Aerial Vehicle (UAV) and a humanoid robot solve a Search and Rescue scenario locally, without the aid of a commonly used Global Navigation Satellite System (GNSS). Specifically, the UAV uses a combination of Simultaneous Localization and Mapping and OctoMap approaches to extract a 2.5D occupancy grid map of the unknown area in relation to the humanoid robot. The humanoid robot receives a goal position in the created map and executes a path planning algorithm in order to estimate the FootStep navigation trajectory for reaching the goal. As the humanoid robot navigates, it localizes itself in the map while using an adaptive Monte-Carlo Localization algorithm by combining local odometry data with sensor observations from the UAV. Finally, the humanoid robot performs visual human body detection while using camera data through a Darknet pre-trained neural network. The proposed robot collaboration scheme has been tested under a proof of concept setting in an exterior GNSS-denied environment. | en |
Τύπος | Peer-Reviewed Journal Publication | en |
Τύπος | Δημοσίευση σε Περιοδικό με Κριτές | el |
Άδεια Χρήσης | http://creativecommons.org/licenses/by/4.0/ | en |
Ημερομηνία | 2021-12-21 | - |
Ημερομηνία Δημοσίευσης | 2020 | - |
Θεματική Κατηγορία | Unmanned aerial vehicles (UAV) | en |
Θεματική Κατηγορία | Humanoid robot | en |
Θεματική Κατηγορία | Search and Rescue (SAR) | en |
Θεματική Κατηγορία | Robot operating system (ROS) | en |
Θεματική Κατηγορία | Stereo imaging | en |
Θεματική Κατηγορία | Simultaneous localization and mapping (SLAM) | en |
Θεματική Κατηγορία | Path planning | en |
Θεματική Κατηγορία | Robotic cooperation | en |
Βιβλιογραφική Αναφορά | D. Chatziparaschis, M. G. Lagoudakis, and P. Partsinevelos, “Aerial and ground robot collaboration for autonomous mapping in search and rescue missions,” Drones, vol. 4, no. 4, Dec. 2020. doi: 10.3390/DRONES4040079 | en |