URI | http://purl.tuc.gr/dl/dias/600426A9-2418-400E-B5A1-6FD8EBA07836 | - |
Αναγνωριστικό | https://doi.org/10.26233/heallink.tuc.90473 | - |
Γλώσσα | en | - |
Μέγεθος | 27.2 megabytes | en |
Τίτλος | Acceleration of simultaneous localization and mapping (SLAM) algorithms on graphics processing units (GPUs) for unmanned air drones
| en |
Τίτλος | Επιτάχυνση με χρήση κάρτας γραφικών του αλγορίθμου SLAM για χαρτογράφηση και εντοπισμό θέσης σε μη επανδρωμένα εεροχήματα
| el |
Δημιουργός | Felekis Panagiotis | en |
Δημιουργός | Φελεκης Παναγιωτης | el |
Συντελεστής [Επιβλέπων Καθηγητής] | Dollas Apostolos | en |
Συντελεστής [Επιβλέπων Καθηγητής] | Δολλας Αποστολος | el |
Συντελεστής [Μέλος Εξεταστικής Επιτροπής] | Lagoudakis Michail | en |
Συντελεστής [Μέλος Εξεταστικής Επιτροπής] | Λαγουδακης Μιχαηλ | el |
Συντελεστής [Μέλος Εξεταστικής Επιτροπής] | Partsinevelos Panagiotis | en |
Συντελεστής [Μέλος Εξεταστικής Επιτροπής] | Παρτσινεβελος Παναγιωτης | el |
Εκδότης | Πολυτεχνείο Κρήτης | el |
Εκδότης | Technical University of Crete | en |
Ακαδημαϊκή Μονάδα | Technical University of Crete::School of Electrical and Computer Engineering | en |
Ακαδημαϊκή Μονάδα | Πολυτεχνείο Κρήτης::Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών | el |
Περιγραφή | An object, turn a screw, or weld two pieces of metal together. Mobile robots must solve two basic problems: create a map of the environment and position themselves into this map. Simultaneous localization and mapping (SLAM) approaches can incrementally construct a map of the robot's surrounding environment, while estimating the robot's position in the map. Visual SLAM (vSLAM) uses the camera to obtain corresponding two dimensional digital images from the real three-dimensional world. These camera provides images with high resolution, rich colours and textures, which we can exploit to create a very rich map. Due to high computational demands of vSLAM, scaled-down versions are used with smaller resolution and less key features, resulting in poor estimations.
In this thesis, we propose an accelerated version of ORB vSLAM that uses a GPU. In our version, we use high resolution images which results in more accurate and rich results. Our system operates in NVIDIA Jetson Tx2 embedded module which is suitable for autonomous robots due to low power consumption.
In terms of performance results, our system performs almost identically to a fully-powered desktop CPU, while consuming 5$\times$ less power. We also prove that our system is as much accurate as the non-accelerated vSLAM system, by using a well-established accuracy dataset. | en |
Περίληψη | In order to achieve fully autonomous work in an unknown environment, many robots rely on cameras and vision algorithms to figure out where to place an object, turn a screw, or weld two pieces of metal together. Mobile robots must solve two basic problems: create a map of the environment and position themselves into this map. Simultaneous localization and mapping (SLAM) algorithm can incrementally construct a map of the robot's surrounding environment while estimating the robot's position in the map. Visual SLAM (vSLAM) uses the camera to obtain corresponding two dimensional digital images from the real three-dimensional world. These camera provides images with high resolution, rich colours and textures where we can exploit to create a very rich map. Due to high computational demands of vSLAM, scaled-down versions are used with smaller resolution and less key features, resulting in poor estimations.
In this thesis, we propose an accelerated version of vSLAM that uses a GPU. In our version, we use high resolution images which results in more accurate and rich results. Our system operates in NVIDIA Jetson Tx2 embedded module which is suitable for autonomous robots due to low power consumption.
In terms of performance results, our system performs almost identical to a full-powered desktop CPU, while consuming 5x less power. We also prove that our system is as much accurate as other SLAM systems, by using a well-established accuracy dataset. | en |
Περίληψη | Σε αυτή την ερευνά προτείνουμε ένα SLAM σύστημα που χρησιμοποιεί κάρτα γραφικών για την επιτάχυνση του. Με αυτό τον τρόπο μπορούμε να χρησιμοποιήσουμε βίντεο υψηλής ευκρίνειας, για την καλύτερη χαρτογράφηση του περιβάλλοντος, σε λιγότερο χρόνο. Το σύστημα μας λειτουργεί σε ενσωματωμένη συσκευή NVIDIA Jetson Tx2 η οποία είναι κατάλληλη για αυτόνομα ρομπότ λόγο των υψηλών ενεργειακών αποδόσεων και μικρού μεγέθους. Συγκρίνουμε την ακρίβεια, την υπολογιστική και ενεργειακή απόδοση του συστήματος μας, με έναν προσωπικό υπολογιστή. | el |
Τύπος | Διπλωματική Εργασία | el |
Τύπος | Diploma Work | en |
Άδεια Χρήσης | http://creativecommons.org/licenses/by/4.0/ | en |
Ημερομηνία | 2021-10-12 | - |
Ημερομηνία Δημοσίευσης | 2021 | - |
Θεματική Κατηγορία | Image processing | en |
Θεματική Κατηγορία | Computer vision | en |
Βιβλιογραφική Αναφορά | Panagiotis Felekis, "Acceleration of simultaneous localization and mapping (SLAM) algorithms on graphics processing units (GPUs) for unmanned air drones", Diploma Work, School of Electrical and Computer Engineering, Technical University of Crete, Chania, Greece, 2021 | en |
Βιβλιογραφική Αναφορά | Παναγιώτης Φελέκης, "Επιτάχυνση με χρήση κάρτας γραφικών του αλγορίθμου SLAM για χαρτογράφηση και εντοπισμό θέσης σε μη επανδρωμένα εεροχήματα
", Διπλωματική Εργασία, Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών, Πολυτεχνείο Κρήτης, Χανιά, Ελλάς, 2021 | el |