Ιδρυματικό Αποθετήριο [SANDBOX]
Πολυτεχνείο Κρήτης
EN  |  EL

Αναζήτηση

Πλοήγηση

Ο Χώρος μου

Επιτάχυνση με χρήση κάρτας γραφικών του αλγορίθμου SLAM για χαρτογράφηση και εντοπισμό θέσης σε μη επανδρωμένα εεροχήματα

Felekis Panagiotis

Απλή Εγγραφή


URIhttp://purl.tuc.gr/dl/dias/600426A9-2418-400E-B5A1-6FD8EBA07836-
Αναγνωριστικόhttps://doi.org/10.26233/heallink.tuc.90473-
Γλώσσαen-
Μέγεθος27.2 megabytesen
ΤίτλοςAcceleration of simultaneous localization and mapping (SLAM) algorithms on graphics processing units (GPUs) for unmanned air drones en
ΤίτλοςΕπιτάχυνση με χρήση κάρτας γραφικών του αλγορίθμου SLAM για χαρτογράφηση και εντοπισμό θέσης σε μη επανδρωμένα εεροχήματα el
ΔημιουργόςFelekis Panagiotisen
ΔημιουργόςΦελεκης Παναγιωτηςel
Συντελεστής [Επιβλέπων Καθηγητής]Dollas Apostolosen
Συντελεστής [Επιβλέπων Καθηγητής]Δολλας Αποστολοςel
Συντελεστής [Μέλος Εξεταστικής Επιτροπής]Lagoudakis Michailen
Συντελεστής [Μέλος Εξεταστικής Επιτροπής]Λαγουδακης Μιχαηλel
Συντελεστής [Μέλος Εξεταστικής Επιτροπής]Partsinevelos Panagiotisen
Συντελεστής [Μέλος Εξεταστικής Επιτροπής]Παρτσινεβελος Παναγιωτηςel
ΕκδότηςΠολυτεχνείο Κρήτηςel
ΕκδότηςTechnical University of Creteen
Ακαδημαϊκή ΜονάδαTechnical University of Crete::School of Electrical and Computer Engineeringen
Ακαδημαϊκή ΜονάδαΠολυτεχνείο Κρήτης::Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστώνel
ΠεριγραφήAn object, turn a screw, or weld two pieces of metal together. Mobile robots must solve two basic problems: create a map of the environment and position themselves into this map. Simultaneous localization and mapping (SLAM) approaches can incrementally construct a map of the robot's surrounding environment, while estimating the robot's position in the map. Visual SLAM (vSLAM) uses the camera to obtain corresponding two dimensional digital images from the real three-dimensional world. These camera provides images with high resolution, rich colours and textures, which we can exploit to create a very rich map. Due to high computational demands of vSLAM, scaled-down versions are used with smaller resolution and less key features, resulting in poor estimations. In this thesis, we propose an accelerated version of ORB vSLAM that uses a GPU. In our version, we use high resolution images which results in more accurate and rich results. Our system operates in NVIDIA Jetson Tx2 embedded module which is suitable for autonomous robots due to low power consumption. In terms of performance results, our system performs almost identically to a fully-powered desktop CPU, while consuming 5$\times$ less power. We also prove that our system is as much accurate as the non-accelerated vSLAM system, by using a well-established accuracy dataset.en
ΠερίληψηIn order to achieve fully autonomous work in an unknown environment, many robots rely on cameras and vision algorithms to figure out where to place an object, turn a screw, or weld two pieces of metal together. Mobile robots must solve two basic problems: create a map of the environment and position themselves into this map. Simultaneous localization and mapping (SLAM) algorithm can incrementally construct a map of the robot's surrounding environment while estimating the robot's position in the map. Visual SLAM (vSLAM) uses the camera to obtain corresponding two dimensional digital images from the real three-dimensional world. These camera provides images with high resolution, rich colours and textures where we can exploit to create a very rich map. Due to high computational demands of vSLAM, scaled-down versions are used with smaller resolution and less key features, resulting in poor estimations. In this thesis, we propose an accelerated version of vSLAM that uses a GPU. In our version, we use high resolution images which results in more accurate and rich results. Our system operates in NVIDIA Jetson Tx2 embedded module which is suitable for autonomous robots due to low power consumption. In terms of performance results, our system performs almost identical to a full-powered desktop CPU, while consuming 5x less power. We also prove that our system is as much accurate as other SLAM systems, by using a well-established accuracy dataset.en
ΠερίληψηΣε αυτή την ερευνά προτείνουμε ένα SLAM σύστημα που χρησιμοποιεί κάρτα γραφικών για την επιτάχυνση του. Με αυτό τον τρόπο μπορούμε να χρησιμοποιήσουμε βίντεο υψηλής ευκρίνειας, για την καλύτερη χαρτογράφηση του περιβάλλοντος, σε λιγότερο χρόνο. Το σύστημα μας λειτουργεί σε ενσωματωμένη συσκευή NVIDIA Jetson Tx2 η οποία είναι κατάλληλη για αυτόνομα ρομπότ λόγο των υψηλών ενεργειακών αποδόσεων και μικρού μεγέθους. Συγκρίνουμε την ακρίβεια, την υπολογιστική και ενεργειακή απόδοση του συστήματος μας, με έναν προσωπικό υπολογιστή.el
ΤύποςΔιπλωματική Εργασίαel
ΤύποςDiploma Worken
Άδεια Χρήσηςhttp://creativecommons.org/licenses/by/4.0/en
Ημερομηνία2021-10-12-
Ημερομηνία Δημοσίευσης2021-
Θεματική ΚατηγορίαImage processingen
Θεματική ΚατηγορίαComputer visionen
Βιβλιογραφική ΑναφοράPanagiotis Felekis, "Acceleration of simultaneous localization and mapping (SLAM) algorithms on graphics processing units (GPUs) for unmanned air drones", Diploma Work, School of Electrical and Computer Engineering, Technical University of Crete, Chania, Greece, 2021en
Βιβλιογραφική ΑναφοράΠαναγιώτης Φελέκης, "Επιτάχυνση με χρήση κάρτας γραφικών του αλγορίθμου SLAM για χαρτογράφηση και εντοπισμό θέσης σε μη επανδρωμένα εεροχήματα ", Διπλωματική Εργασία, Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών, Πολυτεχνείο Κρήτης, Χανιά, Ελλάς, 2021el

Διαθέσιμα αρχεία

Υπηρεσίες

Στατιστικά