Ιδρυματικό Αποθετήριο [SANDBOX]
Πολυτεχνείο Κρήτης
EN  |  EL

Αναζήτηση

Πλοήγηση

Ο Χώρος μου

A novel heuristic algorithm for the modeling and risk assessment of the COVID-19 pandemic phenomenon

Asteris, Panagiotis G., 1964-, Douvika Maria G., Karamani Chrysoula A., Skentou Athanasia D., Chlichlia, Aikaterini, Cavaleri Liborio, Daras Tryfonas, Armaghani Danial J., Zaoutis, Theoklis E

Απλή Εγγραφή


URIhttp://purl.tuc.gr/dl/dias/75C4DB88-95FF-47D6-B85D-0630C7E089CB-
Αναγνωριστικόhttps://doi.org/10.32604/cmes.2020.013280-
Αναγνωριστικόhttps://www.techscience.com/CMES/v125n2/40324-
Γλώσσαen-
Μέγεθος14 pagesen
Μέγεθος1,35 megabytesen
ΤίτλοςA novel heuristic algorithm for the modeling and risk assessment of the COVID-19 pandemic phenomenonen
ΔημιουργόςAsteris, Panagiotis G., 1964-en
ΔημιουργόςDouvika Maria G.en
ΔημιουργόςKaramani Chrysoula A.en
ΔημιουργόςSkentou Athanasia D.en
ΔημιουργόςChlichlia, Aikaterinien
ΔημιουργόςCavaleri Liborioen
ΔημιουργόςDaras Tryfonasen
ΔημιουργόςΔαρας Τρυφωναςel
ΔημιουργόςArmaghani Danial J.en
ΔημιουργόςZaoutis, Theoklis Een
ΕκδότηςTech Science Pressen
ΠεριγραφήThis article belongs to the special issue: Soft computing techniques in materials science and engineeringen
ΠερίληψηThe modeling and risk assessment of a pandemic phenomenon such as COVID-19 is an important and complicated issue in epidemiology, and such an attempt is of great interest for public health decision-making. To this end, in the present study, based on a recent heuristic algorithm proposed by the authors, the time evolution of COVID-19 is investigated for six different countries/states, namely New York, California, USA, Iran, Sweden and UK. The number of COVID-19-related deaths is used to develop the proposed heuristic model as it is believed that the predicted number of daily deaths in each country/state includes information about the quality of the health system in each area, the age distribution of population, geographical and environmental factors as well as other conditions. Based on derived predicted epidemic curves, a new 3D-epidemic surface is proposed to assess the epidemic phenomenon at any time of its evolution. This research highlights the potential of the proposed model as a tool which can assist in the risk assessment of the COVID-19. Mapping its development through 3D-epidemic surface can assist in revealing its dynamic nature as well as differences and similarities among different districts. en
ΤύποςPeer-Reviewed Journal Publicationen
ΤύποςΔημοσίευση σε Περιοδικό με Κριτέςel
Άδεια Χρήσηςhttp://creativecommons.org/licenses/by/4.0/en
Ημερομηνία2021-09-27-
Ημερομηνία Δημοσίευσης2020-
Θεματική ΚατηγορίαAlgorithmen
Θεματική ΚατηγορίαCOVID-19en
Θεματική ΚατηγορίαGaussian-functionen
Θεματική ΚατηγορίαHeuristic modelen
Θεματική ΚατηγορίαPandemic trenden
Θεματική ΚατηγορίαPredictionen
Θεματική ΚατηγορίαSARS-CoV-2en
Βιβλιογραφική ΑναφοράP. G. Asteris, M. G. Douvika, C. A. Karamani, A. D. Skentou, K. Chlichlia, L. Cavaleri, T. Daras, D. J. Armaghani, and T. E. Zaoutis, “A novel heuristic algorithm for the modeling and risk assessment of the COVID-19 pandemic phenomenon,” CMES-Comp. Model. Eng. Sci., vol. 125, no. 2, pp. 815–828, 2020. doi: 10.32604/cmes.2020.013280en

Διαθέσιμα αρχεία

Υπηρεσίες

Στατιστικά