Ιδρυματικό Αποθετήριο [SANDBOX]
Πολυτεχνείο Κρήτης
EN  |  EL

Αναζήτηση

Πλοήγηση

Ο Χώρος μου

Βελτιστοποίηση χωροθέτησης σταθμών ηλεκτροπαραγωγής από κυματική ενέργεια μέσω μηχανικής μάθησης και γεωγραφικών πληροφοριακών συστημάτων

Batsis Georgios

Πλήρης Εγγραφή


URI: http://purl.tuc.gr/dl/dias/4BC261D8-9C14-4B98-BF21-A50FD2F0D6DB
Έτος 2021
Τύπος Διπλωματική Εργασία
Άδεια Χρήσης
Λεπτομέρειες
Βιβλιογραφική Αναφορά Γεώργιος Μπατσής, "Βελτιστοποίηση χωροθέτησης σταθμών ηλεκτροπαραγωγής από κυματική ενέργεια μέσω μηχανικής μάθησης και γεωγραφικών πληροφοριακών συστημάτων", Διπλωματική Εργασία, Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών, Πολυτεχνείο Κρήτης, Χανιά, Ελλάς, 2021 https://doi.org/10.26233/heallink.tuc.89730
Εμφανίζεται στις Συλλογές

Περίληψη

Στις μέρες μας, οι Ανανεώσιμες Πηγές Ενέργειας αποτελούν μία διέξοδο στο πρόβλημα της ολοένα και εντονότερης κλιματικής αλλαγής. Γι' αυτόν τον λόγο, αρκετές χώρες προχωρούν στην παραγωγή ηλεκτρικής ενέργειας από εναλλακτικές πηγές όπως, φωτοβολταϊκά και αιολικά συστήματα, με σκοπό τον σταδιακό περιορισμό λειτουργίας των ρυπογόνων συμβατικών μέσων παραγωγής ηλεκτρικής ενέργειας (λιγνίτης, άνθρακας). Μια εκ των εναλλακτικών πηγών παραγωγής ηλεκτρικής ενέργειας αποτελεί η κυματική. Οι Μετατροπείς Κυματικής Ενέργειας είναι συστήματα τα οποία μετατρέπουν την κυματική ενέργεια σε ηλεκτρική. Εκτιμάται ότι το ποσοστό της παραγόμενης ενέργειας από ανανεώσιμες πηγές με αξιοποίηση της κυματικής ενέργειας είναι δυνατόν να αυξηθεί σε μεγάλη κλίμακα μελλοντικά σε περιοχές όπως η Σκανδιναβία, η Μεσόγειος, το Ηνωμένο Βασίλειο, η Ωκεανία και η θαλάσσια περιοχή της αμερικανικής ηπείρου. Στη συγκεκριμένη εργασία εξετάζεται η βέλτιστη χωροθέτηση εγκατάστασης Μετατροπέων Κυματικής Ενέργειας. Προκειμένου να βρεθεί η βέλτιστη χωροθέτηση είναι απαραίτητο να ληφθούν υπόψη γεωχωρικοί και τεχνικοί περιορισμοί. Οι γεωχωρικοί περιορισμοί εξαρτώνται τόσο από την θαλάσσια χλωρίδα όσο και από την χρήση της εγγύτερης παραθαλάσσιας γης. Οι τεχνικοί περιορισμοί περιλαμβάνουν τις μετεωρολογικές συνθήκες και η μορφολογία του θαλάσσιου πυθμένα. Οι ιδανικές περιοχές εγκατάστασης επιλέγονται μετά τον αποκλεισμό των σημείων που δεν πληρούν τους προαναφερθέντες περιορισμούς.Η αναζήτηση ιδανικών τοποθεσιών επιτυγχάνεται μέσω της αξιοποίησης αλγορίθμων Μηχανικής Μάθησης. Αρχικά, υλοποιείται ένα Νευρωνικό Δίκτυο που λειτουργεί βάσει της συγχώνευσης ετερογενών δεδομένων, εν προκειμένω δορυφορικών εικόνων και χρονοσειρών μετεωρολογικών δεδομένων. Το γεγονός αυτό συνεπάγεται τον καθορισμό αρχιτεκτονικής δύο διακλαδώσεων. Η διακλάδωση που εκπαιδεύεται με δεδομένα εικόνων προβλέπει τον εντοπισμό δυναμικών γεωχωρικών κλάσεων στην υποψήφια περιοχή εγκατάστασης, ενώ η δεύτερη διακλάδωση είναι υπεύθυνη για την ταξινόμησή της περιοχής, αξιοποιώντας χρονοσειρές ύψους και περιόδου κυμάτων. Στη λήψη της τελικής απόφασης για τη καταλληλότητα της υποψήφιας περιοχής διαδραματίζουν σημαντικό ρόλο και πλήθος στατικών δεδομένων χρήσης γης, των οποίων η αξιοποίηση δεν απαιτεί κάποιον αλγόριθμο Μηχανικής Μάθησης. Επομένως, τα εν λόγω δεδομένα συνδυάζονται με τις προβλέψεις του Νευρωνικού Δικτύου με σκοπό την βελτιστοποίηση χωροθέτησης των Μετατροπέων Κυματικής Ενέργειας.Για λόγους πληρότητας και ευελιξίας, δημιουργείται ακόμη ένα Νευρωνικό Δίκτυο πολλαπλών διεργασιών, δηλαδή δύο εξόδων. Το συγκεκριμένο μοντέλο εκτός από την πρόβλεψη της καταλληλότητας μιας περιοχής ανάλογα με την θαλάσσια χλωρίδα και την κυματική ενέργεια, προβλέπει και τις κλάσεις χρήσης γης μέσω της Ταξινόμησης Πολλαπλών Ετικετών. Στην περίπτωση αυτή οι υποψήφιες περιοχές ταξινομούνται ως ιδανικές ή ως μη ιδανικές για την εγκατάσταση Μετατροπέων Κυματικής Ενέργειας αποκλειστικά με την βοήθεια των προβλέψεων του Νευρωνικού Δικτύου.Είναι προφανές πως για την ανάπτυξη και εφαρμογή του προαναφερθέντος συστήματος και του Νευρωνικού Δικτύου απαιτείται μεγάλος όγκος ετερογενών δεδομένων. Για τον λόγο αυτό, δημιουργείται ένα προγραμματιστικό εργαλείο εξαγωγής γεωγραφικής πληροφορίας που αποσκοπεί στην συλλογή γεωαναφερόμενων δεδομένων. Το εργαλείο αυτό καθίσταται υπεύθυνο για την ανάπτυξη δεδομένων εκπαίδευσης και την εφαρμογή του συνολικού συστήματος στην επιθυμητή περιοχή μελέτης μετά το πέρας της εκπαίδευσης.Η προτεινόμενη μεθοδολογία εφαρμόζεται στην θαλάσσια περιοχή της πόλης Σίνες της Πορτογαλίας. Στην συγκεκριμένη γεωγραφική περιοχή εστιάζουν και εργασίες στις οποίες η βέλτιστη χωροθέτηση πραγματοποιείται μέσω των παραδοσιακών μεθόδων. Στην παρούσα εργασία συγκαταλέγονται μεταξύ άλλων και υποψήφιες περιοχές εγκατάστασης κοντά στην ακτή. Γι' αυτόν τον λόγο, η σύγκριση των αποτελεσμάτων μπορεί να πραγματοποιηθεί κυρίως για τα υπεράκτια σημεία. Αν και η αξιολόγηση της κυματικής ενέργειας πραγματοποιείται μέσω διαφορετικών μεθόδων και στην παρούσα εργασία υπολογίζεται στην μελέτη και η θαλάσσια χλωρίδα, υπάρχει συμφωνία των αποτελεσμάτων σε πολύ μεγάλο βαθμό. Το πρώτο Νευρωνικό Δίκτυο επιτυγχάνει απόδοση Δυαδικής Ταξινόμησης 98.7 %, ενώ το Νευρωνικό Δίκτυο πολλαπλών διεργασιών 97.5 % στο αντίστοιχο μέγεθος και 93.5 % στην μετρική F1 της εξόδου Ταξινόμησης Πολλαπλών Ετικετών.

Διαθέσιμα αρχεία

Υπηρεσίες

Στατιστικά