Ιδρυματικό Αποθετήριο [SANDBOX]
Πολυτεχνείο Κρήτης
EN  |  EL

Αναζήτηση

Πλοήγηση

Ο Χώρος μου

A mayfly optimization algorithm

Zervoudakis Konstantinos, Tsafarakis Stelios

Απλή Εγγραφή


URIhttp://purl.tuc.gr/dl/dias/9D4749D3-2D47-4D87-BAE6-10F9EFCF5772-
Αναγνωριστικόhttps://doi.org/10.1016/j.cie.2020.106559-
Αναγνωριστικόhttps://www.sciencedirect.com/science/article/pii/S036083522030293X-
Γλώσσαen-
Μέγεθος23 pagesen
ΤίτλοςA mayfly optimization algorithmen
ΔημιουργόςZervoudakis Konstantinosen
ΔημιουργόςΖερβουδακης Κωνσταντινοςel
ΔημιουργόςTsafarakis Steliosen
ΔημιουργόςΤσαφαρακης Στελιοςel
ΕκδότηςElsevieren
ΠερίληψηThis paper introduces a new method called the Mayfly Algorithm (MA) to solve optimization problems. Inspired from the flight behavior and the mating process of mayflies, the proposed algorithm combines major advantages of swarm intelligence and evolutionary algorithms. To evaluate the performance of the proposed algorithm, 38 mathematical benchmark functions, including 13 CEC2017 test functions, are employed and the results are compared to those of seven state of the art well-known metaheuristic optimization methods. The MA’s performance is also assessed through convergence behavior in multi-objective optimization as well as using a real-world discrete flow-shop scheduling problem. The comparison results demonstrate the superiority of the proposed method in terms of convergence rate and convergence speed. The processes of nuptial dance and random flight enhance the balance between algorithm’s exploration and exploitation properties and assist its escape from local optima.en
ΤύποςPeer-Reviewed Journal Publicationen
ΤύποςΔημοσίευση σε Περιοδικό με Κριτέςel
Άδεια Χρήσηςhttp://creativecommons.org/licenses/by/4.0/en
Ημερομηνία2021-07-15-
Ημερομηνία Δημοσίευσης2020-
Θεματική ΚατηγορίαMayfly algorithmen
Θεματική ΚατηγορίαNature-inspired algorithmen
Θεματική ΚατηγορίαOptimizationen
Βιβλιογραφική ΑναφοράK. Zervoudakis and S. Tsafarakis, “A mayfly optimization algorithm,” Comput. Ind. Eng., vol. 145, Jul. 2020. doi: 10.1016/j.cie.2020.106559en

Υπηρεσίες

Στατιστικά