Institutional Repository [SANDBOX]
Technical University of Crete
EN  |  EL

Search

Browse

My Space

Automated fish cage net inspection using image processing techniques

Paspalakis Stavros, Moirogiorgou Konstantia, Papandroulakis Nikos, Giakos George, Zervakis Michail

Simple record


URIhttp://purl.tuc.gr/dl/dias/09E7AFA1-5168-46F6-A5D5-D121385FE7E9-
Identifierhttps://doi.org/10.1049/iet-ipr.2019.1667-
Identifierhttps://ietresearch.onlinelibrary.wiley.com/doi/10.1049/iet-ipr.2019.1667-
Languageen-
Extent7 pagesen
Extent1,63 megabytesen
TitleAutomated fish cage net inspection using image processing techniquesen
CreatorPaspalakis Stavrosen
CreatorΠασπαλακης Σταυροςel
CreatorMoirogiorgou Konstantiaen
CreatorΜοιρογιωργου Κωνσταντιαel
CreatorPapandroulakis Nikosen
CreatorGiakos Georgeen
CreatorZervakis Michailen
CreatorΖερβακης Μιχαηλel
PublisherInstitution of Engineering and Technology (IET)en
Content SummaryFish-cage dysfunction in aquaculture installations can trigger significant negative consequences affecting the operational costs. Low oxygen levels, due to excessive fooling's, leads to decrease growth performance, and feed efficiency. Therefore, frequent periodic inspection of fish-cage nets is required, but this task can become quite expensive with the traditional means of employing professional divers that perform visual inspections at regular time intervals. The modern trend in aquaculture is to take advantage of IT technologies with the use of a small-sized, low-cost autonomous underwater vehicle, permanently residing within a fish cage and performing regular video inspection of the infrastructure for the entire net surface. In this study, we explore specialised image processing schemes to detect net holes of multiple area size and shape. These techniques are designed with the vision to provide robust solutions that take advantage of either global or local image structures to provide the efficient inspection of multiple net holes.en
Type of ItemPeer-Reviewed Journal Publicationen
Type of ItemΔημοσίευση σε Περιοδικό με Κριτέςel
Licensehttp://creativecommons.org/licenses/by/4.0/en
Date of Item2021-05-28-
Date of Publication2020-
SubjectAquacultureen
SubjectAutomatic optical inspectionen
SubjectObject detectionen
SubjectVideo signal processingen
SubjectRobot visionen
SubjectAutonomous underwater vehiclesen
SubjectMobile robotsen
SubjectAutomated fish cage net inspectionen
SubjectImage processingen
SubjectFish-cage dysfunctionen
SubjectAquaculture installationsen
SubjectVisual inspectionsen
SubjectAutonomous underwater vehicleen
SubjectVideo inspectionen
SubjectGlobal image structuresen
SubjectLocal image structuresen
SubjectIT technologiesen
SubjectNet holes detectionen
Bibliographic CitationS. Paspalakis, K. Moirogiorgou, N. Papandroulakis, G. Giakos, and M. Zervakis, “Automated fish cage net inspection using image processing techniques,” IET Image Process., vol. 14, no. 10, pp. 2028–2034, Aug. 2020. doi: 10.1049/iet-ipr.2019.1667en

Available Files

Services

Statistics