Ιδρυματικό Αποθετήριο [SANDBOX]
Πολυτεχνείο Κρήτης
EN  |  EL

Αναζήτηση

Πλοήγηση

Ο Χώρος μου

Performance evaluation of global hydrological models in six large Pan-Arctic watersheds

Gaedeke, Anne, Krysanova, Valentina, Aryal Aashutosh, Chang Jinfeng, Gryllakis Emmanouil, Hanasaki Naota, Koutroulis Aristeidis, Pokhrel Yadu, Satoh Yusuke, Schaphoff Sibyll, Mueller Schmied Hannes, Stacke Tobias, Tang Qiuhong, Wada Yoshihide, Thonicke, Kirsten 1972-

Απλή Εγγραφή


URIhttp://purl.tuc.gr/dl/dias/3EFFF2C7-4324-4CCD-B8E8-FEF66D8EA23F-
Αναγνωριστικόhttps://doi.org/10.1007/s10584-020-02892-2-
Αναγνωριστικόhttps://link.springer.com/article/10.1007/s10584-020-02892-2-
Γλώσσαen-
ΤίτλοςPerformance evaluation of global hydrological models in six large Pan-Arctic watershedsen
ΔημιουργόςGaedeke, Anneen
ΔημιουργόςKrysanova, Valentinaen
ΔημιουργόςAryal Aashutoshen
ΔημιουργόςChang Jinfengen
ΔημιουργόςGryllakis Emmanouilen
ΔημιουργόςΓρυλλακης Εμμανουηλel
ΔημιουργόςHanasaki Naotaen
ΔημιουργόςKoutroulis Aristeidisen
ΔημιουργόςΚουτρουλης Αριστειδηςel
ΔημιουργόςPokhrel Yaduen
ΔημιουργόςSatoh Yusukeen
ΔημιουργόςSchaphoff Sibyllen
ΔημιουργόςMueller Schmied Hannesen
ΔημιουργόςStacke Tobiasen
ΔημιουργόςTang Qiuhongen
ΔημιουργόςWada Yoshihideen
ΔημιουργόςThonicke, Kirsten 1972-en
ΕκδότηςSpringer Natureen
ΠερίληψηGlobal Water Models (GWMs), which include Global Hydrological, Land Surface, and Dynamic Global Vegetation Models, present valuable tools for quantifying climate change impacts on hydrological processes in the data scarce high latitudes. Here we performed a systematic model performance evaluation in six major Pan-Arctic watersheds for different hydrological indicators (monthly and seasonal discharge, extremes, trends (or lack of), and snow water equivalent (SWE)) via a novel Aggregated Performance Index (API) that is based on commonly used statistical evaluation metrics. The machine learning Boruta feature selection algorithm was used to evaluate the explanatory power of the API attributes. Our results show that the majority of the nine GWMs included in the study exhibit considerable difficulties in realistically representing Pan-Arctic hydrological processes. Average APIdischarge (monthly and seasonal discharge) over nine GWMs is > 50% only in the Kolyma basin (55%), as low as 30% in the Yukon basin and averaged over all watersheds APIdischarge is 43%. WATERGAP2 and MATSIRO present the highest (APIdischarge > 55%) while ORCHIDEE and JULES-W1 the lowest (APIdischarge ≤ 25%) performing GWMs over all watersheds. For the high and low flows, average APIextreme is 35% and 26%, respectively, and over six GWMs APISWE is 57%. The Boruta algorithm suggests that using different observation-based climate data sets does not influence the total score of the APIs in all watersheds. Ultimately, only satisfactory to good performing GWMs that effectively represent cold-region hydrological processes (including snow-related processes, permafrost) should be included in multi-model climate change impact assessments in Pan-Arctic watersheds.en
ΤύποςPeer-Reviewed Journal Publicationen
ΤύποςΔημοσίευση σε Περιοδικό με Κριτέςel
Άδεια Χρήσηςhttp://creativecommons.org/licenses/by/4.0/en
Ημερομηνία2021-04-20-
Ημερομηνία Δημοσίευσης2020-
Θεματική ΚατηγορίαGlobal Water Modelsen
Θεματική ΚατηγορίαModel performanceen
Θεματική ΚατηγορίαModel evaluationen
Θεματική ΚατηγορίαArctic watershedsen
Θεματική ΚατηγορίαBoruta feature selectionen
Βιβλιογραφική ΑναφοράA. Gädeke, V. Krysanova, A. Aryal, J. Chang, M. Grillakis, N. Hanasaki, A. Koutroulis, Y. Pokhrel, Y. Satoh, S. Schaphoff, H. Müller Schmied, T. Stacke, Q. Tang, Y. Wada and K. Thonicke, “Performance evaluation of global hydrological models in six large Pan-Arctic watersheds”, Clim. Change, vol. 163, no. 3, pp. 1329–1351, Dec. 2020. doi: 10.1007/s10584-020-02892-2en

Διαθέσιμα αρχεία

Υπηρεσίες

Στατιστικά