Το έργο με τίτλο Quantum channel simulation of phylogenetic branching models από τον/τους δημιουργό/ούς Ellinas Dimosthenis, Jarvis Peter D. διατίθεται με την άδεια Creative Commons Αναφορά Δημιουργού 4.0 Διεθνές
Βιβλιογραφική Αναφορά
D. Ellinas and P.D. Jarvis, "Quantum channel simulation of phylogenetic branching models," J. Phys. A Math. Theor., vol. 52, no. 11, Feb. 2019. doi: 10.1088/1751-8121/ab0313
https://doi.org/10.1088/1751-8121/ab0313
Quantum channel simulations constructing probability tensors for biological multi-taxa in phylogenetics are proposed. These are given in terms of positive trace preserving maps (quantum channels), operating on quantum density matrices, using evolving systems of quantum walks with multiple walkers. Simulation of a variety of standard phylogenetic branching models, applying on trees of various topologies, is constructed using appropriate decoherent quantum circuits. For the sequences of biological characters so modelled, quantum simulations of statistical inference for them are constructed, given appropriate aligned molecular sequence data. This is achieved by the introduction of a quantum pruning map, operating on likelihood operator observables, utilizing state-observable duality and quantum measurement theory. More general stategies for related quantum simulation targets are also discussed.