Ιδρυματικό Αποθετήριο [SANDBOX]
Πολυτεχνείο Κρήτης
EN  |  EL

Αναζήτηση

Πλοήγηση

Ο Χώρος μου

Markov chain Monte Carlo for effective personalized recommendations

Papilaris Michail-Aggelos, Chalkiadakis Georgios

Απλή Εγγραφή


URIhttp://purl.tuc.gr/dl/dias/FA4DCE17-21B2-492C-A233-504CD5686666-
Αναγνωριστικόhttps://doi.org/10.1007/978-3-030-14174-5_13-
Αναγνωριστικόhttps://link.springer.com/chapter/10.1007/978-3-030-14174-5_13-
Γλώσσαen-
Μέγεθος17 pagesen
ΤίτλοςMarkov chain Monte Carlo for effective personalized recommendationsen
ΔημιουργόςPapilaris Michail-Aggelosen
ΔημιουργόςΠαπιλαρης Μιχαηλ-Αγγελοςel
ΔημιουργόςChalkiadakis Georgiosen
ΔημιουργόςΧαλκιαδακης Γεωργιοςel
ΕκδότηςSpringer Natureen
ΠερίληψηThis paper adopts a Bayesian approach for finding top recommendations. The approach is entirely personalized, and consists of learning a utility function over user preferences via employing a sampling-based, non-intrusive preference elicitation framework. We explicitly model the uncertainty over the utility function and learn it through passive user feedback, provided in the form of clicks on previously recommended items. The utility function is a linear combination of weighted features, and beliefs are maintained using a Markov Chain Monte Carlo algorithm. Our approach overcomes the problem of having conflicting user constraints by identifying a convex region within a user’s preferences model. Additionally, it handles situations where not enough data about the user is available, by exploiting the information from clusters of (feature) weight vectors created by observing other users’ behavior. We evaluate our system’s performance by applying it in the online hotel booking recommendations domain using a real-world dataset, with very encouraging results.en
ΤύποςΠλήρης Δημοσίευση σε Συνέδριοel
ΤύποςConference Full Paperen
Άδεια Χρήσηςhttp://creativecommons.org/licenses/by/4.0/en
Ημερομηνία2020-10-26-
Ημερομηνία Δημοσίευσης2018-
Θεματική ΚατηγορίαAdaptation and learningen
Θεματική ΚατηγορίαRecommender systemsen
Θεματική ΚατηγορίαBayesian networksen
Βιβλιογραφική ΑναφοράM.-A. Papilaris and G. Chalkiadakis, "Markov chain Monte Carlo for effective personalized recommendations," in Multi-Agent Systems, vol. 11450, Lecture Notes in Computer Science, M. Slavkovik, Ed., Cham, Switzerland: Springer Nature, 2019, pp. 188-204. doi: 10.1007/978-3-030-14174-5_13en

Υπηρεσίες

Στατιστικά