Το έργο με τίτλο Ανάπτυξη συνελικτικών νευρωνικών δικτύων για την κατηγοριοποίηση της αορτικής βαλβίδας από δεδομένα υπερηχογραφήματος καρδιάς από τον/τους δημιουργό/ούς Zafeiris Stylianos διατίθεται με την άδεια Creative Commons Αναφορά Δημιουργού 4.0 Διεθνές
Βιβλιογραφική Αναφορά
Στυλιανός Ζαφείρης, "Ανάπτυξη συνελικτικών νευρωνικών δικτύων για την κατηγοριοποίηση της αορτικής βαλβίδας από δεδομένα υπερηχογραφήματος καρδιάς", Διπλωματική Εργασία, Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών, Πολυτεχνείο Κρήτης, Χανιά, Ελλάς, 2020
https://doi.org/10.26233/heallink.tuc.87018
Η καρδιά είναι από τα βασικότερα όργανα του ανθρωπίνου σώματος, καθώς είναι υπεύθυνη για την κυκλοφορία του αίματος μέσα σε αυτό. Πολλές φόρες, όμως, διάφορες καρδιαγγειακές παθήσεις προκαλούν προβλήματα στην λειτουργεία της και χρήζουν άμεσης αντιμετώπισης. Οι παθήσεις αυτές είτε προκαλούνται από τον τρόπο ζωής, είτε υπάρχουν υπό την μορφή ανωμαλιών εκ γενετής και προκαλούν προβλήματα αργότερα στη ζωή του. Μία τέτοια ανωμαλία είναι η δίπτυχη αορτική βαλβίδα την οποία εμφανίζει περίπου το 1% με 2% του παγκόσμιου πληθυσμού. Αυτή δύναται να προκαλέσει διάφορες άλλες καρδιαγγειακές παθήσεις όπως, για παράδειγμα στένωση της αορτικής βαλβίδας η οποία μπορεί να προκαλέσει μείωση της ροής του αίματος προς την κυριότερη αρτηρία του ανθρωπίνου σώματος, την αορτή. Γίνεται αντιληπτό ότι είναι σημαντική η σωστή διάγνωση του τύπου της αορτικής βαλβίδας για την άμεση αντιμετώπιση πιθανών νοσημάτων. Ο πιο άμεσος τρόπος για την ανίχνευση του είδους της αορτικής βαλβίδας, είναι το υπερηχογράφημα καρδιάς. Συχνά, όμως, η θορυβώδες φύση του υπερηχογραφήματος δυσκολεύει την διάγνωση από τους γιατρούς. Στην μελέτη αυτή γίνεται προσπάθεια για την διάκριση της αορτικής βαλβίδας σε δίπτυχη (μη-φυσιολογική) και τρίπτυχη (φυσιολογική), από δεδομένα υπερήχου καρδιάς, με σκοπό την διευκόλυνση των ειδικών κατά την διάρκεια της εξέτασης των ασθενών. Η διάκριση της αορτικής βαλβίδας επιτυγχάνεται με χρήση συνελικτικών νευρωνικών δικτύων και πιο συγκεκριμένα μέσω του γνωστού 2D δικτύου, VGG16, το οποίο επεκτείνεται σε 3D. Διάφορες τεχνικές επαύξησης δεδομένων και μεταφοράς γνώσης αντιμετωπίζουν το περιορισμό που εισάγει ο μικρός αριθμός των διαθέσιμων δεδομένων. Η προτεινόμενη αρχιτεκτονική επιτυγχάνει ακρίβεια από 93.82% έως και 98.64%, γεγονός που την καθιστά ικανή να χρησιμοποιηθεί για την υποβοήθηση της διάγνωσης από τους ειδικούς.