Το έργο με τίτλο Συνδυαστική ανάλυση φαινότυπου και γονότυπου στον καρκίνο του πνεύμονα στο πλαίσιο της ραδιο-γονιδιωματικής από τον/τους δημιουργό/ούς Dovrou Aikaterini διατίθεται με την άδεια Creative Commons Αναφορά Δημιουργού-Παρόμοια Διανομή 4.0 Διεθνές
Βιβλιογραφική Αναφορά
Αικατερίνη Δόβρου, "Συνδυαστική ανάλυση φαινότυπου και γονότυπου στον καρκίνο του πνεύμονα στο πλαίσιο της ραδιο-γονιδιωματικής", Διπλωματική Εργασία, Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών, Πολυτεχνείο Κρήτης, Χανιά, Ελλάς, 2020
https://doi.org/10.26233/heallink.tuc.86490
Tα τελευταία χρόνια έχει παρατηρηθεί αυξημένο επιστημονικό ενδιαφέρον, για την ανάπτυξη μοντέλων, τα οποία στοχεύουν στην συσχέτιση απεικονιστικών χαρακτηριστικών του καρκίνου με το γενετικό του προφίλ (Ραδιο-γονιδιωματική), ώστε να συμβάλουν στην διάγνωση, αξιολόγηση, θεραπεία και πρόγνωση του καρκίνου του πνεύμονα. Τα απεικονιστικά χαρακτηριστικά εξάγονται από ιατρικές standard-of-care εικόνες και αντιπροσωπεύουν τον καρκινικό φαινότυπο. Ο καρκινικός φαινότυπος δημιουργείται από την αναδιάταξη και τις αλλοιώσεις τις γενετικής πληροφορίας. Η μετάλλαξη των γονιδίων οδηγεί στον κυτταρικό πολλαπλασιασμό και κατά συνέπεια, στην εξάπλωση του καρκίνου, η οποία χαρακτηρίζει το καρκινικό στάδιο. Έγκυρα διαγνωστικά εργαλεία για την αναγνώριση του καρκινικού σταδίου είναι αναγκαία, ώστε να επιλεγεί η κατάλληλη θεραπεία. Η παρούσα έρευνα έχει ως στόχο την εξερεύνηση συσχετίσεων μεταξύ των πιο σημαντικών απεικονιστικών χαρακτηριστικών και γονιδίων του καρκίνου του πνεύμονα και της δυνατότητάς τους να ανιχνεύσουν το καρκινικό στάδιο ασθενών με μη-μικροκυτταρικό καρκίνο του πνεύμονα (ΜΜΚΠ). Η παρούσα ανάλυση περιλαμβάνει την αναγνώριση των διαφορετικά εκφραζόμενων γονιδίων μεταξύ πληθυσμών που έχουν προσβληθεί από καρκίνο και υγιών πληθυσμών, μέσω της εφαρμογής του αλγορίθμου Significance Analysis of Microarrays (SAM) και της τεχνικής 2-fold change. Εν συνεχεία, υλοποιήθηκαν συσχετίσεις των γονιδίων με παραγόμενα απεικονιστικά χαρακτηριστικά αξονικής τομογραφίας, μέσω των μεθόδων Spearman rank correlation test, SAM για ποσοτικά προβλήματα και False Discovery Rate (FDR), αποκαλύπτοντας 78 σημαντικά γονίδια συσχετιζόμενα με απεικονιστικά χαρακτηριστικά. Τα γονίδια αυτά, αξιολογήθηκαν ως προς την εγκυρότητά τους για τον διαγνωστικό τους χαρακτήρα μέσω τεχνικών ταξινόμησης και clustering. Ακολούθησε ο σχηματισμός clusters από συνεκφραζόμενα απεικονιστικά χαρακτηριστικά (metafeatures). Από αυτές τις δυο διαδικασίες , 77 ομογενή metafeatures και 73 σημαντικά γονίδια αναγνωρίστηκαν. Τα γονίδια αναλύθηκαν μέσω του αλγορίθμου Least Absolute Shrinkage and Selection Operation (LASSO) regression, για να διερευνηθεί η δυνατότητά τους να προβλέψουν με ακρίβεια τα metafeatures. Μέσω της ανάλυσης, 51 metafeatures, τα οποία είναι συσχετιζόμενα και μπορούν να προβλεφθούν μέσω των γονιδίων, αναγνωρίστηκαν. Το τελευταίο στάδιο περιλάμβανε την εξέταση της προβλεπτικής ικανότητας των εναπομεινάντων σημαντικών γονιδίων και metafeatures, του καρκίνου του πνεύμονα, μέσω ποικίλων τεστ ταξινόμησης χρησιμοποιώντας Linear Support Vector Machines (SVM) αλγορίθμους. Η παρούσα έρευνα είχε ως βασικό συμπέρασμα ότι, το καρκινικό στάδιο μπορεί να προβλεφθεί μέσω a) γονιδίων, με ακρίβεια 75.00%-95.11%, b) metafeatures, με ακρίβεια 70.83%-95.00%, και c) συνδυασμού metafeatures και γονιδίων, με ακρίβεια 85.24%-100.00%. Επιπλέον, τεχνητά απεικονιστικά χαρακτηριστικά παράχθηκαν μέσω γραμμικού συνδυασμού γονιδίων, τα οποία δείχνουν ότι μπορούν να αντικαταστήσουν τα πραγματικά metafeatures και να προβλέψουν το καρκινικό στάδιο με ακρίβεια 76.47%-83.60%. Τέλος, ανακαλύφθηκαν σηματοδοτικά και μεταβολικά μονοπάτια καθώς και miRNA targets μέσω της ανάλυσης εμπλουτισμού των παραγόμενων γονιδιακών υπογραφών.