Ιδρυματικό Αποθετήριο [SANDBOX]
Πολυτεχνείο Κρήτης
EN  |  EL

Αναζήτηση

Πλοήγηση

Ο Χώρος μου

Ανίχνευση κακόβουλου λογισμικού μέσω μηχανικής μάθησης: αρχιτεκτονική διπλής εισόδου

Bellonias Panagiotis

Απλή Εγγραφή


URIhttp://purl.tuc.gr/dl/dias/EAA789D2-8A85-490D-B404-083B60FDFBB6-
Αναγνωριστικόhttps://doi.org/10.26233/heallink.tuc.86343-
Γλώσσαen-
Μέγεθος3.8 megabytesen
Μέγεθος57 σελίδεςel
ΤίτλοςMalware detection using machine learning: a double input architectureen
ΤίτλοςΑνίχνευση κακόβουλου λογισμικού μέσω μηχανικής μάθησης: αρχιτεκτονική διπλής εισόδουel
ΔημιουργόςBellonias Panagiotisen
ΔημιουργόςΜπελλωνιας Παναγιωτηςel
Συντελεστής [Επιβλέπων Καθηγητής]Bletsas Aggelosen
Συντελεστής [Επιβλέπων Καθηγητής]Μπλετσας Αγγελοςel
Συντελεστής [Μέλος Εξεταστικής Επιτροπής]Lagoudakis Michailen
Συντελεστής [Μέλος Εξεταστικής Επιτροπής]Λαγουδακης Μιχαηλel
Συντελεστής [Μέλος Εξεταστικής Επιτροπής]Κάτος, Βασίλειος Ανen
ΕκδότηςΠολυτεχνείο Κρήτηςel
ΕκδότηςTechnical University of Creteen
Ακαδημαϊκή ΜονάδαTechnical University of Crete::School of Electrical and Computer Engineeringen
Ακαδημαϊκή ΜονάδαΠολυτεχνείο Κρήτης::Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστώνel
ΠερίληψηThis dissertation evaluates the effectiveness of a double input architecture of a machine learning model on malware detection. The model developed is compared to two different neural network architectures to highlight its effectiveness. The first one uses an image representation of the executable file as an input and the second one utilizes only features from the headers of the file. The implemented neural network, using both inputs, outperformed its contestants with an area under receiver operating characteristic (ROC) curve (AUC) equal to 0.989. Furthermore, state-of-the-art antivirus products were compared to the proposed architecture, even though the latter was trained with a relatively limited dataset. The proposed neural network of this work was placed third with a True Positive Rate of 0.972. Complete sources are provided for reproducing the proposed model and the derived results. The importance of large dataset availability in such domains should not be overlooked.en
ΠερίληψηΑυτή η εργασία αξιολογεί την αποδοτικότητα ενός μοντέλου μηχανικής μάθησης με διπλή είσοδο για τον εντοπισμό κακόβουλου λογισμικού. Το μοντέλο που υλοποιήθηκε συγκρίνεται με άλλες δύο αρχιτεκτονικές νευρωνικών δικτύων για να εκτιμηθεί η αποτελεσματικότητά του. Το πρώτο νευρωνικό χρησιμοποιεί το εκτελέσιμο αρχείο σε μορφή εικόνας σαν είσοδο ενώ το δεύτερο εκμεταλλεύεται χαρακτηριστικά από τις κεφαλίδες του δείγματος. Το προτεινόμενο νευρωνικό δίκτυο, χρησιμοποιώντας και τις δύο μορφές πληροφορίας σαν είσοδο, έφερε καλύτερα αποτελέσματα σε σχέση με τα υπόλοιπα σημειώνοντας εμβαδό κάτω από την καμπύλη ίσο με 0.989. Επιπλέον, έγιναν πειράματα σύγκρισης της αρχιτεκτονικής με σύγχρονες εμπορικές λύσεις για τον εντοπισμό κακόβουλου λογισμικού, παρόλο που η εκπαίδευση έγινε με σχετικά περιορισμένα δεδομένα. Το προτεινόμενο νευρωνικό δίκτυο της εργασίας σημείωσε το τρίτο καλύτερο ποσοστό αληθώς θετικών δειγμάτων ίσο με 0.972. Με τη διπλωματική περιλαμβάνονται όλα τα εργαλεία και δεδομένα που απαιτούνται για την αναπαραγωγή του προτεινόμενου μοντέλου αλλά και των παραγόμενων αποτελεσμάτων. Η σημασία της διαθεσιμότητας των δεδομένων δεν μπορεί να αμεληθεί.el
ΤύποςΔιπλωματική Εργασίαel
ΤύποςDiploma Worken
Άδεια Χρήσηςhttp://creativecommons.org/licenses/by-nc/4.0/en
Ημερομηνία2020-07-29-
Ημερομηνία Δημοσίευσης2020-
Θεματική ΚατηγορίαΚακόβουλο Λογισμικόel
Θεματική ΚατηγορίαΚυβερνοασφάλειαel
Θεματική ΚατηγορίαΜηχανική μάθησηel
Θεματική ΚατηγορίαMachine learningen
Θεματική ΚατηγορίαCyber securityen
Θεματική ΚατηγορίαMalwareen
Βιβλιογραφική ΑναφοράPanagiotis Bellonias, "Malware detection using machine learning: a double input architecture", Diploma Work, School of Electrical and Computer Engineering, Technical University of Crete, Chania, Greece, 2020en
Βιβλιογραφική ΑναφοράΠαναγιώτης Μπελλώνιας, "Ανίχνευση κακόβουλου λογισμικού μέσω μηχανικής μάθησης: αρχιτεκτονική διπλής εισόδου", Διπλωματική Εργασία, Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών, Πολυτεχνείο Κρήτης, Χανιά, Ελλάς, 2020el

Διαθέσιμα αρχεία

Υπηρεσίες

Στατιστικά