Institutional Repository [SANDBOX]
Technical University of Crete
EN  |  EL

Search

Browse

My Space

Adversarial learning in statistical dialogue systems

Dialektakis Georgios

Simple record


URIhttp://purl.tuc.gr/dl/dias/61C5E296-DF97-49E6-9F34-7719775576DA-
Identifierhttps://doi.org/10.26233/heallink.tuc.86333-
Languageen-
Extent57 pagesen
Extent3.5 megabytesen
TitleΑνταγωνιστική μάθηση σε στατιστικά συστήματα διαλόγουel
TitleAdversarial learning in statistical dialogue systemsen
CreatorDialektakis Georgiosen
CreatorΔιαλεκτακης Γεωργιοςel
Contributor [Thesis Supervisor]Lagoudakis Michailen
Contributor [Thesis Supervisor]Λαγουδακης Μιχαηλel
Contributor [Committee Member]Diakoloukas Vasileiosen
Contributor [Committee Member]Διακολουκας Βασιλeioςel
Contributor [Committee Member]Chalkiadakis Georgiosen
Contributor [Committee Member]Χαλκιαδακης Γεωργιοςel
PublisherΠολυτεχνείο Κρήτηςel
PublisherTechnical University of Creteen
Academic UnitTechnical University of Crete::School of Electrical and Computer Engineeringen
Academic UnitΠολυτεχνείο Κρήτης::Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστώνel
Content SummaryIn the past few years, the machine learning community has shifted its attention in Generative Adversarial Networks (GANs) and has shown their enormous potential in image, video and audio generation. Nevertheless, they haven't been used widely in the field of Spoken Dialogue Systems (SDS). In this work, we investigate a novel use of GANs in the field of SDS. Drawing intuition from recent related work, we investigate the use of a form of GANs, the Adversarial Autoencoder (AAE), as we want to explore efficient Belief State (BS) space representations through generative adversarial modeling. We review the difficulties that arise when training a GAN and we propose techniques to improve the training process. In particular, we propose the use of the Wasserstein Adversarial Autoencoder (WAAE), which is based on the Wasserstein loss, and we investigate its effectiveness compared to the baseline AAEs. We also examine the efficiency of the Denoising Adversarial Autoencoder (DAAE) in noisy environments. To evaluate our models, we implemented our algorithms in the PyDial toolkit and we performed several experiments employing two Reinforcement Learning (RL) algorithms, GP-SARSA and LSPI. These two algorithms receive the BS representation from the AAE and optimize the dialogue policy. Our experiments confirm the ability of the generative adversarial modeling to robustly represent the BS space, since the proposed method exhibits state-of-the-art performance, particularly in environments with high levels of noise.en
Content SummaryΤα τελευταία χρόνια, έχει ενταθεί το ενδιαφέρον της ερευνητικής κοινότητας για τα Γενετικά Ανταγωνιστικά Δίκτυα (GANs). Το ενδιαφέρον αυτό βασίζεται στις μεγάλες δυνατότητες που έχουν επιδείξει στη σύνθεση τεχνητών εικόνων, βίντεο και ήχου. Ωστόσο, δεν έχουν χρησιμοποιηθεί ευρέως στον τομέα των Συστημάτων Διαλόγου. Σε αυτή τη διατριβή, ερευνάμε μία καινοτόμα χρήση των GANs στον τομέα των Συστημάτων Διαλόγου. Παρακινούμενοι από μία πρόσφατη σχετική εργασία, προτείνουμε μια νέα χρήση μιας μορφής Γενετικών Ανταγωνιστικών Δικτύων, του Ανταγωνιστικού Aυτόματου Kωδικοποιητή (Adversarial Autoencoder), καθώς θέλουμε να διερευνήσουμε αποδοτικές απεικονίσεις του χώρου των πεποιθήσεων μέσω του μοντέλου ανταγωνιστικής μάθησης. Εξετάζουμε τις δυσκολίες που εμφανίζονται κατά την εκπαίδευση ενός γενετικού ανταγωνιστικού δικτύου (GAN) και προτείνουμε κάποιες τεχνικές για την αντιμετώπισή τους. Συγκεκριμένα, προτείνουμε τη χρήση του Wasserstein Ανταγωνιστικού Aυτόματου Kωδικοποιητή (Autoencoder), ο οποίος βασίζεται στη συνάρτηση απώλειας του Wasserstein, και διερευνάμε την αποτελεσματικότητά του κατά την εκπαίδευση Ανταγωνιστικών Aυτόματων Kωδικοποιητών. Εξετάζουμε επίσης την αποδοτικότητα του Denoising Ανταγωνιστικού Aυτόματου Kωδικοποιητή σε περιβάλλοντα όπου υπάρχει υψηλός θόρυβος. Για να μελετήσουμε την απόδοση των μοντέλων μας, υλοποιήσαμε τους αλγορίθμους μας και εκτελέσαμε διάφορα πειράματα στο εργαλείο PyDial, όπου χρησιμοποιούμε δύο αλγορίθμους Ενισχυτικής Μάθησης, τον GP-SARSA και τον LSPI. Αυτοί οι δύο αλγόριθμοι λαμβάνουν την αναπαράσταση του χώρου των πεποιθήσεων από τον Ανταγωνιστικό Αποκωδικοποιητή και βελτιστοποιούν την πολιτική διαλόγου. Επιβεβαιώνουμε την ικανότητα του ανταγωνιστικού μοντέλου στην ισχυρή αναπαράσταση του χώρου των πεποιθήσεων και δείχνουμε ότι η μέθοδός μας παρουσιάζει παρόμοια και μερικές φορές καλύτερη απόδοση από την τελευταία λέξη της τεχνολογίας, ιδιαίτερα σε περιβάλλοντα με υψηλά επίπεδα θορύβου. el
Type of ItemΔιπλωματική Εργασίαel
Type of ItemDiploma Worken
Licensehttp://creativecommons.org/licenses/by/4.0/en
Date of Item2020-07-29-
Date of Publication2020-
SubjectBelief state space representationen
SubjectGenerative adversarial networksen
SubjectMachine learningen
SubjectStatistical dialogue systemsen
Bibliographic CitationGeorgios Dialektakis, "Adversarial learning in statistical dialogue systems", Diploma Work, School of Electrical and Computer Engineering, Technical University of Crete, Chania, Greece, 2020en
Bibliographic CitationΓεώργιος Διαλεκτάκης, "Ανταγωνιστική μάθηση σε στατιστικά συστήματα διαλόγου", Διπλωματική Εργασία, Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών, Πολυτεχνείο Κρήτης, Χανιά, Ελλάς, 2020el

Available Files

Services

Statistics