Ιδρυματικό Αποθετήριο [SANDBOX]
Πολυτεχνείο Κρήτης
EN  |  EL

Αναζήτηση

Πλοήγηση

Ο Χώρος μου

Ανταγωνιστική μάθηση σε στατιστικά συστήματα διαλόγου

Dialektakis Georgios

Πλήρης Εγγραφή


URI: http://purl.tuc.gr/dl/dias/61C5E296-DF97-49E6-9F34-7719775576DA
Έτος 2020
Τύπος Διπλωματική Εργασία
Άδεια Χρήσης
Λεπτομέρειες
Βιβλιογραφική Αναφορά Γεώργιος Διαλεκτάκης, "Ανταγωνιστική μάθηση σε στατιστικά συστήματα διαλόγου", Διπλωματική Εργασία, Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών, Πολυτεχνείο Κρήτης, Χανιά, Ελλάς, 2020 https://doi.org/10.26233/heallink.tuc.86333
Εμφανίζεται στις Συλλογές

Περίληψη

Τα τελευταία χρόνια, έχει ενταθεί το ενδιαφέρον της ερευνητικής κοινότητας για τα Γενετικά Ανταγωνιστικά Δίκτυα (GANs). Το ενδιαφέρον αυτό βασίζεται στις μεγάλες δυνατότητες που έχουν επιδείξει στη σύνθεση τεχνητών εικόνων, βίντεο και ήχου. Ωστόσο, δεν έχουν χρησιμοποιηθεί ευρέως στον τομέα των Συστημάτων Διαλόγου. Σε αυτή τη διατριβή, ερευνάμε μία καινοτόμα χρήση των GANs στον τομέα των Συστημάτων Διαλόγου. Παρακινούμενοι από μία πρόσφατη σχετική εργασία, προτείνουμε μια νέα χρήση μιας μορφής Γενετικών Ανταγωνιστικών Δικτύων, του Ανταγωνιστικού Aυτόματου Kωδικοποιητή (Adversarial Autoencoder), καθώς θέλουμε να διερευνήσουμε αποδοτικές απεικονίσεις του χώρου των πεποιθήσεων μέσω του μοντέλου ανταγωνιστικής μάθησης. Εξετάζουμε τις δυσκολίες που εμφανίζονται κατά την εκπαίδευση ενός γενετικού ανταγωνιστικού δικτύου (GAN) και προτείνουμε κάποιες τεχνικές για την αντιμετώπισή τους. Συγκεκριμένα, προτείνουμε τη χρήση του Wasserstein Ανταγωνιστικού Aυτόματου Kωδικοποιητή (Autoencoder), ο οποίος βασίζεται στη συνάρτηση απώλειας του Wasserstein, και διερευνάμε την αποτελεσματικότητά του κατά την εκπαίδευση Ανταγωνιστικών Aυτόματων Kωδικοποιητών. Εξετάζουμε επίσης την αποδοτικότητα του Denoising Ανταγωνιστικού Aυτόματου Kωδικοποιητή σε περιβάλλοντα όπου υπάρχει υψηλός θόρυβος. Για να μελετήσουμε την απόδοση των μοντέλων μας, υλοποιήσαμε τους αλγορίθμους μας και εκτελέσαμε διάφορα πειράματα στο εργαλείο PyDial, όπου χρησιμοποιούμε δύο αλγορίθμους Ενισχυτικής Μάθησης, τον GP-SARSA και τον LSPI. Αυτοί οι δύο αλγόριθμοι λαμβάνουν την αναπαράσταση του χώρου των πεποιθήσεων από τον Ανταγωνιστικό Αποκωδικοποιητή και βελτιστοποιούν την πολιτική διαλόγου. Επιβεβαιώνουμε την ικανότητα του ανταγωνιστικού μοντέλου στην ισχυρή αναπαράσταση του χώρου των πεποιθήσεων και δείχνουμε ότι η μέθοδός μας παρουσιάζει παρόμοια και μερικές φορές καλύτερη απόδοση από την τελευταία λέξη της τεχνολογίας, ιδιαίτερα σε περιβάλλοντα με υψηλά επίπεδα θορύβου.

Διαθέσιμα αρχεία

Υπηρεσίες

Στατιστικά