Institutional Repository [SANDBOX]
Technical University of Crete
EN  |  EL

Search

Browse

My Space

Common mode patterns for supervised tensor subspace learning

Makantasis Konstantinos, Doulamis, Anastasios, Doulamis Nikolaos D., Voulodimos, Athanasios

Simple record


URIhttp://purl.tuc.gr/dl/dias/BFEDEB8E-BD37-4214-B3C4-3F9781138C19-
Identifierhttps://doi.org/10.1109/ICASSP.2019.8682616-
Identifierhttps://ieeexplore.ieee.org/document/8682616-
Languageen-
Extent5 pagesen
TitleCommon mode patterns for supervised tensor subspace learningen
CreatorMakantasis Konstantinosen
CreatorΜακαντασης Κωνσταντινοςel
CreatorDoulamis, Anastasiosen
CreatorDoulamis Nikolaos D.en
CreatorVoulodimos, Athanasiosen
PublisherInstitute of Electrical and Electronics Engineersen
Content SummaryIn this work we propose a method for reducing the dimensionality of tensor objects in a binary classification framework. The proposed Common Mode Patterns method takes into consideration the labels' information, and ensures that tensor objects that belong to different classes do not share common features after the reduction of their dimensionality. We experimentally validate the proposed supervised subspace learning technique and compared it against Multilinear Principal Component Analysis using a publicly available hyper-spectral imaging dataset. Experimental results indicate that the proposed CMP method can efficiently reduce the dimensionality of tensor objects, while, at the same time, increasing the inter-class separability.en
Type of ItemΠλήρης Δημοσίευση σε Συνέδριοel
Type of ItemConference Full Paperen
Licensehttp://creativecommons.org/licenses/by/4.0/en
Date of Item2020-06-15-
Date of Publication2019-
SubjectCommon mode patternsen
SubjectSupervised tensor subspace learningen
SubjectTensor dimensionality reductionen
Bibliographic CitationK. Makantasis, A. Doulamis, N. Doulamis and A. Voulodimos, "Common mode patterns for supervised tensor subspace learning," in 44th IEEE International Conference on Acoustics, Speech, and Signal Processing, 2019, pp. 2927-2931. doi: 10.1109/ICASSP.2019.8682616en

Services

Statistics