URI | http://purl.tuc.gr/dl/dias/3C2FB0E7-031E-4ECB-8460-571641CB6430 | - |
Αναγνωριστικό | https://doi.org/10.1145/3328905.3329763 | - |
Αναγνωριστικό | https://dl.acm.org/doi/10.1145/3328905.3329763 | - |
Γλώσσα | en | - |
Μέγεθος | 12 pages | en |
Τίτλος | Uncertainty-aware event analytics over distributed settings | en |
Δημιουργός | Giatrakos Nikolaos | en |
Δημιουργός | Γιατρακος Νικολαος | el |
Δημιουργός | Artikis, Alexander | en |
Δημιουργός | Deligiannakis Antonios | en |
Δημιουργός | Δεληγιαννακης Αντωνιος | el |
Δημιουργός | Garofalakis Minos | en |
Δημιουργός | Γαροφαλακης Μινως | el |
Εκδότης | Association for Computing Machinery | en |
Περίληψη | In complex event processing (CEP), simple derived event tuples are combined in pattern matching procedures to derive complex events (CEs) of interest. Big Data applications analyze event streams online and extract CEs to support decision making procedures. At massive scale, such applications operate over distributed networks of sites where efficient CEP requires reducing communication as much as possible. Besides, events often encompass various types of uncertainty. Therefore, massively distributed Big event Data applications in a world of uncertain events call for communication-efficient, uncertainty-aware CEP solutions, which is the focus of this work. As a proof-of-concept for the applicability of our techniques, we show how we bridge the gap between two recent CEP prototypes which use the same CEP engine and each extend it towards only one of the dimensions of distribution and uncertainty. | en |
Τύπος | Πλήρης Δημοσίευση σε Συνέδριο | el |
Τύπος | Conference Full Paper | en |
Άδεια Χρήσης | http://creativecommons.org/licenses/by/4.0/ | en |
Ημερομηνία | 2020-05-28 | - |
Ημερομηνία Δημοσίευσης | 2019 | - |
Θεματική Κατηγορία | Complex event processing | en |
Θεματική Κατηγορία | Distributed Streams | en |
Θεματική Κατηγορία | Uncertainty | en |
Βιβλιογραφική Αναφορά | N. Giatrakos, A. Artikis, A. Deligiannakis and M. Garofalakis, "Uncertainty-aware event analytics over distributed settings," in 13th ACM International Conference on Distributed and Event-Based Systems, 2019, pp. 175-186. doi: 10.1145/3328905.3329763 | en |