Το έργο με τίτλο Παραγωγή δεδομένων μεγάλου όγκου με Διαφορική Ιδιωτικότητα από τον/τους δημιουργό/ούς Zacharioudakis Christos διατίθεται με την άδεια Creative Commons Αναφορά Δημιουργού 4.0 Διεθνές
Βιβλιογραφική Αναφορά
Χρήστος Ζαχαριουδάκης, "Παραγωγή δεδομένων μεγάλου όγκου με Διαφορική Ιδιωτικότητα", Διπλωματική Εργασία, Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών, Πολυτεχνείο Κρήτης, Χανιά, Ελλάς, 2020
https://doi.org/10.26233/heallink.tuc.84556
Στις μέρες μας, δεδομένα υπάρχουν σε αφθονία, αυξάνονται με ραγδαίους ρυθμούς και έχουν ποικίλες χρήσεις. Μια από τις πρόσφατες χρήσεις των δεδομένων είναι η εκπαίδευση μοντέλων Μηχανικής Μάθησης, λογισμικού με την δυνατότητα να λαμβάνει δικές του αποφάσεις. Ωστόσο, η χρήση δεδομένων για την εκπαίδευση των μοντέλων αυτών προκαλεί ανησυχίες σε ό,τι αφορά την ιδιωτικότητα των ατόμων, ειδικά όταν πρόκειται για πολύ ευαίσθητα δεδομένα όπως ιατρικά δεδομένα. Μια λύση στο πρόβλημα αυτό αποτελεί η παραγωγή συνθετικών δεδομένων, η δημιουργία ψεύτικων δεδομένων που αντιπροσωπεύουν όμως τα πραγματικά. Ωστόσο, η παραγωγή συνθετικών δεδομένων παρέχει ελάχιστες εγγυήσεις ιδιωτικότητας. Επομένως αυξάνεται η ανάγκη για έναν ισχυρό και μαθηματικά αυστηρό ορισμό της ιδιωτικότητας που συνοδεύεται από μια κλάση υπολογιστικά εκτελέσιμων αλγορίθμων. Ένας τέτοιος ορισμός είναι η Διαφορική Ιδιωτικότητα. Η εργασία αυτή αποσκοπεί στο να συνδυάσει την έννοια της Διαφορικής Ιδιωτικότητας με διάφορες τεχνικές Μηχανικής Μάθησης, ώστε να παραχθούν δεδομένα που είναι πραγματικά ιδιωτικά και μπορούν να χρησιμοποιηθούν αποτελεσματικά στην θέση των πραγματικών δεδομένων. Τα μοντέλα Μηχανικής Μάθησης που θα μας απασχολήσουν είναι τα Bayesian Networks και τα Generative Adversarial Networks.