Institutional Repository [SANDBOX]
Technical University of Crete
EN  |  EL

Search

Browse

My Space

Catalytic hydrogenation of carbon dioxine to Olefins production

Dimitriou Iason-Christofis

Full record


URI: http://purl.tuc.gr/dl/dias/947EFB19-66C2-433C-9895-E93260B47EE1
Year 2020
Type of Item Diploma Work
License
Details
Bibliographic Citation Iason-Christofis Dimitriou, "Catalytic hydrogenation of carbon dioxine to Olefins production ", Diploma Work, School of Production Engineering and Management, Technical University of Crete, Chania, Greece, 2020 https://doi.org/10.26233/heallink.tuc.84482
Appears in Collections

Summary

It is a well known fact that over the last century, humanity has had to deal with the ever-increasing demands, both in energy and recourses in order to support and upgrade the modern way of life. Since the start of the industrial revolution in the early 19th century, it was known that the resources like mineral raw materials for energy and value-added chemical production, seemingly vast, where limited. Now, the ever-increasing demand is forcing humanity to find new ways of producing energy and products from renewable resources. They need to be friendly to the environment and economically feasible to replace the well-established conventional production industry, in terms of energy and high value chemicals. One of the strategies towards generating renewable source of raw materials is the utilization of CO2 emissions, which not only seems inexhaustible for the modern way of life (greenhouse emissions) , but also has great potential to be used as chemical feedstock for chemicals like urea and olefins or even as fuel in the form of methanol and methane. This present thesis examines the capture and utilization technologies of CO2, with the dual purpose of environmental mitigation and sustainable energy, under the influence of a Life-Cycle Assessment system. Furthermore, an extensive overview of catalytic hydrogenation of CO2 into various value-added fuels/chemicals especially olefins) was carried out. The state-of-the-art catalysts for the CO2 hydrogenation to olefins were comparatively presented, providing valuable insights in relation to the impact of catalyst’s composition and reaction conditions on activity and selectivity. Valued points were made on the efficiency and behaviour of the catalysts, as long as on the future aspects of catalytic hydrogenation of carbon dioxide-to olefins and value-added chemicals.

Available Files

Services

Statistics