Το έργο με τίτλο Aνάπτυξη μεθόδων μηχανικής μάθησης για την επέκταση της φασματικής διάστασης: εφαρμογές σε στιγμιότυπη φασματική εικόνα από τον/τους δημιουργό/ούς Logothetis Fragkoulis διατίθεται με την άδεια Creative Commons Αναφορά Δημιουργού 4.0 Διεθνές
Βιβλιογραφική Αναφορά
Φραγκούλης Λογοθέτης, "Aνάπτυξη μεθόδων μηχανικής μάθησης για την επέκταση της φασματικής διάστασης: εφαρμογές σε στιγμιότυπη φασματική εικόνα ", Μεταπτυχιακή Διατριβή, Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών, Πολυτεχνείο Κρήτης, Χανιά, Ελλάς, 2020
https://doi.org/10.26233/heallink.tuc.84453
Η υπερφασματική απεικόνιση είναι μια αναδυόμενη τεχνολογία που ενσωματώνει την συμβατική απεικόνιση και τη φασματοσκοπία για την συλλογή, τόσο χωρικών, όσο και φασματικών πληροφοριών από ένα αντικείμενο. Οι φασματικές εικόνες, που συλλέγονται στο φασματικό κύβο είναι δεκάδες εκατοντάδες και η πληροφορία που λαμβάνουμε από αυτές έχουν κρίσιμη σημασία για εφαρμογές, όπως: βιοϊατρική τεχνολογία, τηλε-ανίχνευση, μικροσκοπία και άλλα. Παρ' όλα αυτά, τα σημερινά υπερφασματικά συστήματα χαρακτηρίζονται από μακρύ χρόνο απόκρισης, κάτι που τα εμποδίζει να παρατηρήσουν οποιαδήποτε δυναμικός αναπτυσσόμενα φαινόμενα. Επίσης, είναι δαπανηρά και μεγάλα σε μέγεθος, γεγονός που τα καθιστά απρόσιτα για πολλές εφαρμογές. Προκειμένου, να αντιμετωπιστούν αυτοί οι περιορισμοί, μελετήθηκε ένα θεωρητικό σύστημα στιγμιότυπης φασματικής απεικόνισης, το οποίο συλλέγει ένα μικρό αριθμό φασματικών μπαντών, και χρησιμοποιώντας τεχνικές επέκτασης φασματικών διαστάσεων, παρέχει υπερφασματική απεικόνιση σε πραγματικό χρόνο. Επιπροσθέτως, διεξήχθει συγκριτική μελέτη των μεθόδων που παρουσιάζονται στην βιβλιογραφία υπό το πρίσμα διαφορετικών αρχιτεκτονικών (RGB στενά / ευρεία, τρία, έξι, εννέα, και δώδεκα φασματικά κανάλια). Επιπλέον, δύο νέοι αλγόριθμοι, που ονομάζονται K-Fourier και 2Level, προτείνονται και συγκρίνονται όσον αφορά την ελαχιστοποίηση του σφάλματος εκτίμησης των μη συλλεγμένων φασματικών εικόνων. Η καινοτομία των προτεινόμενων μεθόδων πηγάζει κυρίως, από την μείωση της διαστάσεων του χώρου που χρειάζεται να ανακατασκευαστεί. Πειράματα σε τυπικούς χάρτες χρωμάτων δείχνουν ότι ο K-Fourier και οι μη γραμμικοί μέθοδοι πυρήνων, υπερέχουν των άλλων μεθόδων. Εξετάζοντας το ίδιο πρόβλημα από μια άλλη οπτική γωνία, προκειμένου να αυξηθεί η απόδοση των μοντέλων, η διαδικασία εκπαίδευσης των αλγορίθμων μηχανικής μάθησης πρέπει να διεξαχθεί χρησιμοποιώντας ως χαρακτηριστικά (features) τις πιο σημαντικές και ξεχωριστές μπάντες. Για το λόγο αυτό, αναλύθηκε και συγκρίθηκε ένα μεγάλο εύρος τεχνικών επιλογής μπαντών, οι οποίες βασίζονται είτε στη μέτρηση ομοιότητας, είτε σε μοντέλα δυναμικού προγραμματισμού ή σε γενετικούς αλγορίθμους. Οι γενετικοί αλγόριθμοι αποδείχθηκε ότι είναι η πιο αποδοτική μέθοδος επιλογής χαρακτηριστικών, καθώς βελτιώνει δραματικά το σφάλμα ανοικοδόμησης κριμένης πληροφορίας. Επιπλέον, εισάγουμε έναν μη γραμμικό μετασχηματισμό, με στόχο την διασφάλιση των φυσικών περιορισμών ενός ανακλώμενου φάσματος (ομαλότητα και οριοθέτηση μεταξύ [0,1]) . Τέλος, τα ευρήματα αυτά θέτουν τη βάση για την ανάπτυξη ενός ισχυρού συστήματος στιγμιότυπης φασματικής απεικόνισης, πραγματικού χρόνου. Η ιατρική διάγνωση αναμένεται να είναι η κύρια εφαρμογή αυτής της νέας προσέγγισης.