Η διεθνής προσπάθεια για την ανάπτυξη του πρώτου υπερυπολογιστή με δυνατότητα εκτέλεσης πράξεων κλίμακας ενός πεντάκις εκατομμυρίου, έχει δημιουργήσει ζήτηση για εφαρμογές που απαιτούν αντίστοιχο υπολογιστικό φόρτο για την εκτέλεση τους. Η υπερέχουσα επίδοση και κατανάλωση ενέργειας που επιτυγχάνουν οι επιταχυντές υλικού, καθιστά την χρήση τους σε τέτοιες εφαρμογές αναπόφευκτη. Τα Συνελικτικά Νευρωνικά Δίκτυα αποτελούν άριστο παράδειγμα ενός υπολογιστικά εντατικού και άκρως παραλληλοποιήσιμου συστήματος, του οποίου η επίδοση βελτιώνεται σημαντικά, με τη υλοποίηση του σαν επιταχυντή υλικού, όπως έχουν δείξει πρόσφατη βιβλιογραφία. Η παρούσα δουλειά κληρονομεί την σχεδίαση υλικού του επιταχυντή ενός ΣΝΔ, υλοποιημένη από τον Α. Γ. Πίτση και επιχειρεί να την κλιμακώσει, τόσο οριζοντίως, με την ενσωμάτωση της στις σχεδιάσεις του ερευνητικού προγράμματος ExaNeSt και χρήση στην πρωτότυπη πλατφόρμα QFDB, όσο και καθέτως, με την αποσφαλμάτωση μιας εκδοχής της σχεδίασης που αυξάνει τον αριθμό δεσμίδων δεδομένων της εισόδου. Επιπλέον, εφαρμόζουμε μια προσφάτως δημοσιευμένη τεχνική απενεργοποίησης νευρώνων κατά τη διάρκεια της εκτέλεσης του δικτύου, επιδεικνύοντας της δυνατότητα βελτίωσης της εμπιστοσύνης στα αποτελέσματα του δικτύου, θυσιάζοντας επεξεργαστική ισχύ. Οι πλατφόρμες που χρησιμοποιήθηκαν στα πλαίσια αυτής της διπλωματικής εργασίας ήταν οι ZCU102 της Xilinx και το QFDB, το πρωτότυπο που αναπτύχθηκε από το ΙΤΕ.