Institutional Repository [SANDBOX]
Technical University of Crete
EN  |  EL

Search

Browse

My Space

Customer satisfaction prediction in the shipping industry with hybrid meta-heuristic approaches

Bekiros, Stelios, Loukeris Nikolaos, Matsatsinis Nikolaos, Bezzina, Frank

Simple record


URIhttp://purl.tuc.gr/dl/dias/64C9C9B2-7B3D-4CCD-B96E-DF5A28348FAB-
Identifierhttps://doi.org/10.1007/s10614-018-9842-5-
Identifierhttps://link.springer.com/article/10.1007/s10614-018-9842-5-
Languageen-
Extent21 pagesen
TitleCustomer satisfaction prediction in the shipping industry with hybrid meta-heuristic approachesen
CreatorBekiros, Steliosen
CreatorLoukeris Nikolaosen
CreatorΛουκερης Νικολαοςel
CreatorMatsatsinis Nikolaosen
CreatorΜατσατσινης Νικολαοςel
CreatorBezzina, Franken
PublisherSpringer Nature [academic journals on nature.com]en
Content SummaryOptimization and prediction of customer satisfaction in the shipping industry impacts immensely upon strategic planning and consequently on the targeted market share of a corporation. In shipping industry, accurate measures of customer satisfaction are usually very cumbersome to elaborate. In this work we aim to reveal the most effective optimization methods, employing artificial intelligence approaches such as rough sets, neural networks, advanced classification methods as well as multi-criteria analysis under a comparative framework vis-à-vis their forecasting performance.en
Type of ItemPeer-Reviewed Journal Publicationen
Type of ItemΔημοσίευση σε Περιοδικό με Κριτέςel
Licensehttp://creativecommons.org/licenses/by/4.0/en
Date of Item2019-11-14-
Date of Publication2019-
SubjectData miningen
SubjectDecision support systemsen
SubjectMulti-criteria decision analysisen
SubjectNeural networksen
SubjectPreference modelsen
SubjectRough setsen
SubjectShippingen
Bibliographic CitationS. Bekiros, N. Loukeris, N. Matsatsinis and F. Bezzina, "Customer satisfaction prediction in the shipping industry with hybrid meta-heuristic approaches," Comput. Econ., vol. 54, no. 2, pp. 647-667, Aug. 2019. doi: 10.1007/s10614-018-9842-5en

Services

Statistics