URI | http://purl.tuc.gr/dl/dias/EC707282-3D0B-4679-8657-FE636EF510C8 | - |
Αναγνωριστικό | https://doi.org/10.26233/heallink.tuc.83773 | - |
Γλώσσα | en | - |
Μέγεθος | 139 pages | en |
Τίτλος | Assessing bankruptcy risk for financial institutions: methodological framework and predictive modelling | en |
Δημιουργός | Manthoulis Georgios | en |
Δημιουργός | Μανθουλης Γεωργιος | el |
Συντελεστής [Επιβλέπων Καθηγητής] | Zopounidis Konstantinos | en |
Συντελεστής [Επιβλέπων Καθηγητής] | Ζοπουνιδης Κωνσταντινος | el |
Συντελεστής [Μέλος Εξεταστικής Επιτροπής] | Doumpos Michail | en |
Συντελεστής [Μέλος Εξεταστικής Επιτροπής] | Δουμπος Μιχαηλ | el |
Συντελεστής [Μέλος Εξεταστικής Επιτροπής] | Galariotis, Emilios | en |
Συντελεστής [Μέλος Εξεταστικής Επιτροπής] | Chrysovalantis Gaganis | en |
Συντελεστής [Μέλος Εξεταστικής Επιτροπής] | Pasiouras Fotios | en |
Συντελεστής [Μέλος Εξεταστικής Επιτροπής] | Πασιουρας Φωτιος | el |
Συντελεστής [Μέλος Εξεταστικής Επιτροπής] | Atsalakis Georgios | en |
Συντελεστής [Μέλος Εξεταστικής Επιτροπής] | Ατσαλακης Γεωργιος | el |
Συντελεστής [Μέλος Εξεταστικής Επιτροπής] | Kosmidou, Kyriaki | en |
Εκδότης | Πολυτεχνείο Κρήτης | el |
Εκδότης | Technical University of Crete | en |
Ακαδημαϊκή Μονάδα | Technical University of Crete::School of Production Engineering and Management | en |
Ακαδημαϊκή Μονάδα | Πολυτεχνείο Κρήτης::Σχολή Μηχανικών Παραγωγής και Διοίκησης | el |
Περιγραφή | A dissertation submitted to the School of Production Engineering and Management at the Technical University of Crete in partial fulfilment of the requirements for the degree of Doctor of Philosophy. | en |
Περίληψη | This thesis is a comprehensive and complete research on bank failure prediction, as it examines various modeling aspects for obtaining improved results. The analysis is based on a comprehensive dataset of approximately 60,000 observations over an extensive period of nine years (2005-2014), and it examines different prediction horizons, for up to three years prior to failure. We explore whether the addition of variables related to the diversification of the banks’ activities, along with local effects, improves the predictability of the models. Seven popular and widely used machine-learning techniques are compared (logistic regression, support vector machines with linear and radial kernels, naïve Bayes, extreme gradient boosting, random forests and artificial neural networks) and three different classification performance metrics are calculated (AUROC, H-measure, and Kolmogorov-Smirnov metric). In order to ensure the robustness of the results, bootstrap testing is used. The results show that mid- and long-range predictions improve significantly with the addition of diversification variables. Local effects exist and further improve the results while support vector machines along with gradient boosting and random forests outperform the traditional models with the differences increasing over longer prediction horizons. | en |
Τύπος | Διδακτορική Διατριβή | el |
Τύπος | Doctoral Dissertation | en |
Άδεια Χρήσης | http://creativecommons.org/licenses/by/4.0/ | en |
Ημερομηνία | 2019-11-07 | - |
Ημερομηνία Δημοσίευσης | 2019 | - |
Θεματική Κατηγορία | OR in banking | en |
Θεματική Κατηγορία | Bank failure prediction | en |
Βιβλιογραφική Αναφορά | Georgios Manthoulis, "Assessing bankruptcy risk for financial institutions: methodological framework and predictive modelling", Doctoral Dissertation, School of Production Engineering and Management, Technical University of Crete, Chania, Greece, 2019 | en |